Neural stem cells enhance nerve regeneration after sciatic nerve injury in rats.

Lin Xu, Shuai Zhou, Guo-Ying Feng, Lu-Ping Zhang, Dong-Mei Zhao, Yi Sun, Qian Liu, Fei Huang
Author Information
  1. Lin Xu: Department of Extremity Surgery, Yuhuangding Hospital, Zhifu, Yantai 264000, China.

Abstract

With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5 × 10(5) NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair.

References

  1. Annu Rev Neurosci. 2001;24:1217-81 [PMID: 11520933]
  2. J Peripher Nerv Syst. 2003 Dec;8(4):209-26 [PMID: 14641646]
  3. Injury. 2008 Sep;39 Suppl 3:S30-6 [PMID: 18722612]
  4. Science. 1992 Mar 27;255(5052):1707-10 [PMID: 1553558]
  5. Clin Plast Surg. 2005 Oct;32(4):605-16, viii [PMID: 16139631]
  6. Exp Neurol. 2003 Sep;183(1):220-31 [PMID: 12957505]
  7. J Neurosci. 2011 Aug 31;31(35):12579-92 [PMID: 21880919]
  8. Glia. 2001 Apr 1;34(1):8-17 [PMID: 11284015]
  9. Brain Res. 2007 Jun 2;1151:188-94 [PMID: 17425951]
  10. Histol Histopathol. 1995 Jul;10(3):709-18 [PMID: 7579822]
  11. J Cell Mol Med. 2006 Apr-Jun;10(2):309-17 [PMID: 16796801]
  12. Int J Biochem Cell Biol. 2004 Apr;36(4):568-84 [PMID: 15010324]
  13. Neurol Res. 2004 Mar;26(2):151-60 [PMID: 15072634]
  14. J Exp Med. 2005 May 2;201(9):1397-405 [PMID: 15867092]
  15. Exp Neurol. 2001 Mar;168(1):192-5 [PMID: 11170734]
  16. Brain Res. 2004 Mar 5;999(2):155-66 [PMID: 14759494]
  17. J Peripher Nerv Syst. 2007 Jun;12(2):65-82 [PMID: 17565531]
  18. Tissue Eng Part B Rev. 2012 Feb;18(1):40-50 [PMID: 21812591]
  19. J Anat. 1997 Jan;190 ( Pt 1):57-71 [PMID: 9034882]
  20. Microsurgery. 1995;16(8):552-5 [PMID: 8538433]
  21. Brain. 2006 Sep;129(Pt 9):2471-83 [PMID: 16905553]
  22. Annu Rev Neurosci. 2007;30:209-33 [PMID: 17341159]
  23. J Neurosci. 1992 Sep;12(9):3310-20 [PMID: 1527582]
  24. Curr Opin Biotechnol. 2011 Oct;22(5):741-6 [PMID: 21531127]
  25. J Plast Reconstr Aesthet Surg. 2010 Sep;63(9):1544-52 [PMID: 19828391]
  26. J Physiol Paris. 2002 Jan-Mar;96(1-2):17-24 [PMID: 11755779]
  27. Tissue Eng Part A. 2008 May;14(5):595-606 [PMID: 18399734]
  28. Neurosignals. 2010;18(1):49-56 [PMID: 20814222]
  29. Ann Anat. 2011 Jul;193(4):347-53 [PMID: 21514121]
  30. Annu Rev Neurosci. 2007;30:153-79 [PMID: 17506644]
  31. Stem Cells. 2008 May;26(5):1356-65 [PMID: 18308951]
  32. C R Biol. 2007 Jun-Jul;330(6-7):465-73 [PMID: 17631439]
  33. Neuroscience. 2011 May 5;181:278-91 [PMID: 21371534]
  34. Muscle Nerve. 2009 Jun;39(6):787-99 [PMID: 19291791]
  35. Nihon Yakurigaku Zasshi. 2002 Aug;120(2):107-13 [PMID: 12187623]
  36. Biomaterials. 2010 Jul;31(20):5312-24 [PMID: 20381139]
  37. J Res Med Sci. 2010 Jul;15(4):208-13 [PMID: 21526083]
  38. Scand J Plast Reconstr Surg Hand Surg. 2005;39(3):129-37 [PMID: 16019744]

MeSH Term

Animals
Behavior, Animal
Hepatocyte Growth Factor
Immunohistochemistry
Male
Nerve Growth Factor
Nerve Regeneration
Neural Conduction
Neural Stem Cells
Rats
Rats, Sprague-Dawley
Recovery of Function
Sciatic Nerve
Staining and Labeling

Chemicals

Hepatocyte Growth Factor
Nerve Growth Factor

Word Cloud

Created with Highcharts 10.0.0nerveNSCssciaticNGFconduitNSregenerationstemcellsinjuryratsfilledgrowthfactorfunctionalregeneratednervesHGFlatergroupssignificantlygroupenhancedevelopmenttissueengineeringshortageautologousgraftsreconstructioncelltransplantationalternativestrategyimprovepresentstudyevaluatedeffectsmechanismbrain-derivedneuraltransection10-mmgapstumpsbridgedsilicon5 × 105controlexperimentsnormalsalinemorphologicalpropertiesinvestigatedexpressionhepatocytemeasuredOneweekconnectionFoureightweeksfibrousconnectionsevidentproximaldistalsegmentsMotorfunctionrevealedmeasurementindexSFIconductionvelocityNCVFunctionalrecoveryNSCadvancedshowedsignificantimprovementaxonmyelinationExpressioninjuredlowerresultsadvantageseaseharvestrelativeabundancesuggestusedclinicallyperipheralrepairNeural

Similar Articles

Cited By (25)