Innate immunity and exocytosis of antimicrobial peptides.

Tetyana Shandala, Doug A Brooks
Author Information

Abstract

In Drosophila, anti-microbial peptides are activated and secreted in response to microbial challenge, but the intracellular route of anti-microbial peptide trafficking and the regulatory mechanism controlling their secretion are yet to be fully characterized. We have demonstrated that in Drosophila immune response cells (i.e., fat body cells and hemocytes) the anti-microbial peptide Drosomycin is localized within Rab4 and Rab11 intracellular vesicles. Moreover, both of these small GTPases were required for the delivery of this Drosomycin cargo to the plasma membrane. At the plasma membrane, exocytosis and Drosomycin secretion depend on the SNARE protein Syntaxin1A. Thus, the depletion of Syntaxin1A impaired the release of this antimicrobial peptide, and resulted in the accumulation of Drosomycin and Rab11 carrier vesicles near the plasma membrane. Intriguingly, a similar phenotype was generated by the loss of the adaptor protein 14-3-3ε; there was accumulation of Rab11 vesicles and Drosomycin containing vesicles near the plasma membrane, and a concomitant increase in the susceptibility of 14-3-3ε mutant Drosophila to acute bacterial infection. This suggested that 14-3-3ε, possibly via interaction with Syntaxin1A, is required to promote exocytosis of immune-mediators, thereby regulating innate immune secretion and organism survival under conditions of immune stress.

Keywords

References

  1. Curr Biol. 2010 Nov 9;20(21):1881-9 [PMID: 20951045]
  2. J Cell Biol. 2004 Nov 8;167(3):531-43 [PMID: 15534004]
  3. World J Gastroenterol. 2008 Apr 21;14(15):2314-22 [PMID: 18416456]
  4. J Biol Chem. 2005 Mar 18;280(11):10478-83 [PMID: 15640147]
  5. Trends Cell Biol. 2008 Sep;18(9):397-404 [PMID: 18706813]
  6. Biochem Biophys Res Commun. 2007 Aug 3;359(3):599-603 [PMID: 17544372]
  7. Peptides. 2008 Jan;29(1):1-6 [PMID: 18045738]
  8. Nature. 2007 Jan 4;445(7123):95-101 [PMID: 17151602]
  9. Biochem Biophys Res Commun. 2006 Apr 21;342(4):1361-7 [PMID: 16516854]
  10. Mol Biol Cell. 2010 Feb 1;21(3):430-42 [PMID: 19955214]
  11. IUBMB Life. 2010 Apr;62(4):290-5 [PMID: 20175154]
  12. Science. 2003 Dec 5;302(5651):1727-36 [PMID: 14605208]
  13. FEBS Lett. 1993 Nov 15;334(2):175-82 [PMID: 8224244]
  14. Biochem Soc Trans. 2006 Nov;34(Pt 5):683-6 [PMID: 17052174]
  15. Blood. 2011 Jul 7;118(1):9-18 [PMID: 21562044]
  16. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13552-7 [PMID: 21808006]
  17. Biochim Biophys Acta. 2003 Aug 18;1641(2-3):175-81 [PMID: 12914958]
  18. J Cell Sci. 2011 Jul 1;124(Pt 13):2165-74 [PMID: 21670199]
  19. FEBS Lett. 1999 Nov 5;460(3):411-6 [PMID: 10556507]
  20. Traffic. 2010 May;11(5):637-50 [PMID: 20149155]
  21. EMBO J. 2004 Jul 21;23(14):2811-20 [PMID: 15229649]
  22. Nat Rev Immunol. 2006 Dec;6(12):919-29 [PMID: 17124513]
  23. J Biol Chem. 2005 Feb 25;280(8):6610-20 [PMID: 15611044]
  24. J Neurosci. 2001 Jun 1;21(11):3839-48 [PMID: 11356872]
  25. Mini Rev Med Chem. 2006 Oct;6(10):1063-73 [PMID: 17073706]

Word Cloud

Created with Highcharts 10.0.0DrosomycinDrosophilaanti-microbialRab11vesiclesplasmamembraneexocytosisSyntaxin1Apeptidespeptidesecretionimmune14-3-3εresponseintracellularcellsfatbodyRab4smallrequiredproteinantimicrobialaccumulationnearinnateimmunityactivatedsecretedmicrobialchallengeroutetraffickingregulatorymechanismcontrollingyetfullycharacterizeddemonstratediehemocyteslocalizedwithinMoreoverGTPasesdeliverycargodependSNAREThusdepletionimpairedreleaseresultedcarrierIntriguinglysimilarphenotypegeneratedlossadaptorcontainingconcomitantincreasesusceptibilitymutantacutebacterialinfectionsuggestedpossiblyviainteractionpromoteimmune-mediatorstherebyregulatingorganismsurvivalconditionsstressInnate14-3-3GTPase

Similar Articles

Cited By