The usefulness of an independent patient-specific treatment planning verification method using a benchmark plan in high-dose-rate intracavitary brachytherapy for carcinoma of the uterine cervix.

Yutaka Takahashi, Masahiko Koizumi, Iori Sumida, Fumiaki Isohashi, Toshiyuki Ogata, Yuichi Akino, Yasuo Yoshioka, Shintaro Maruoka, Shinichi Inoue, Koji Konishi, Kazuhiko Ogawa
Author Information
  1. Yutaka Takahashi: Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, Japan. ytakahashi@radonc.med.osaka-u.ac.jp

Abstract

To develop an easy independent patient-specific quality assurance (QA) method using a benchmark plan for high-dose-rate intracavitary brachytherapy for cervix cancer, we conducted benchmark treatment planning with various sizes and combinations of tandem-ovoid and tandem-cylinder applications with 'ideal' geometry outside the patient. Two-dimensional-based treatment planning was conducted based on the Manchester method. We predicted the total dwell time of individual treatment plans from the air kerma strength, total dwell time and prescription dose of the benchmark plan. In addition, we recorded the height (dh), width (dw) and thickness (dt) covered with 100% isodose line. These parameters were compared with 169 and 29 clinical cases for tandem-ovoid or tandem-cylinder cases, respectively. With regard to tandem-ovoid cases, differences in total dwell time, dh, dt and dw between benchmark and individual plans were on average -0.2% ± 3.8%, -1.0 mm ± 2.6 mm, 0.8 mm ± 1.3 mm and -0.1 mm ± 1.5 mm, respectively. With regard to tandem-cylinder cases, differences in total dwell time, dh(front) (the distance from tandem tip to tandem ring), dt and dw between benchmark and individual plans were on average -1.5% ± 3.1%, -1.5 mm ± 4.9 mm, 0.1 mm ± 1.0 mm and 0.2 mm ± 0.8 mm, respectively. Of two cases, more than 13% differences in total dwell time were observed between benchmark plans and the clinical cases, which turned out to be due to the use of the wrong source position setting. These results suggest that our method is easy and useful for independent verification of patient-specific treatment planning QA.

References

  1. Br J Radiol. 1953 May;26(305):252-7 [PMID: 13042092]
  2. J Cancer Res Ther. 2008 Oct-Dec;4(4):173-7 [PMID: 19052390]
  3. Med Phys. 2004 Mar;31(3):633-74 [PMID: 15070264]
  4. Cancer. 1986 Jan 1;57(1):148-54 [PMID: 3940615]
  5. J Appl Clin Med Phys. 2003 Spring;4(2):149-55 [PMID: 12777150]
  6. Gynecol Oncol. 1999 Apr;73(1):111-8 [PMID: 10094890]
  7. Med Dosim. 1992 Fall;17(3):151-5 [PMID: 1388681]
  8. Int J Clin Oncol. 2009 Feb;14(1):25-30 [PMID: 19225920]
  9. Int J Radiat Oncol Biol Phys. 1992;24(2):349-57 [PMID: 1526874]
  10. Med Phys. 1995 Feb;22(2):209-34 [PMID: 7565352]
  11. Radiother Oncol. 2001 Aug;60(2):191-201 [PMID: 11439214]
  12. Med Phys. 1994 May;21(5):659-61 [PMID: 7935200]
  13. Med Phys. 2009 Nov;36(11):5359-73 [PMID: 19994544]
  14. Int J Radiat Oncol Biol Phys. 2000 Nov 1;48(4):1251-8 [PMID: 11072186]
  15. Int J Radiat Oncol Biol Phys. 1991 Jan;20(1):95-100 [PMID: 1993635]
  16. Int J Radiat Oncol Biol Phys. 2003 Dec 1;57(5):1492-508 [PMID: 14630289]
  17. Radiother Oncol. 2010 Dec;97(3):501-6 [PMID: 20846734]
  18. Int J Radiat Oncol Biol Phys. 1998 Jan 1;40(1):245-8 [PMID: 9422582]
  19. Cancer. 1993 Oct 15;72(8):2409-14 [PMID: 8402457]
  20. Brachytherapy. 2006 Jan-Mar;5(1):56-60 [PMID: 16563998]
  21. Med Phys. 1995 Sep;22(9):1499-500 [PMID: 8531881]
  22. Int J Radiat Oncol Biol Phys. 2008 Mar 1;70(3):788-94 [PMID: 18191331]

MeSH Term

Benchmarking
Brachytherapy
Female
Humans
Japan
Quality Assurance, Health Care
Radiometry
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
Reproducibility of Results
Sensitivity and Specificity
Uterine Neoplasms

Word Cloud

Created with Highcharts 10.0.0benchmarkcasestreatmenttotaldwelltimemethodplanningplansindependentpatient-specificplantandem-ovoidtandem-cylinderindividualdhdwdtrespectivelydifferences-10easyQAusinghigh-dose-rateintracavitarybrachytherapycervixconductedclinicalregardaverage-01 mm ± 1tandemverificationdevelopqualityassurancecancervarioussizescombinationsapplications'ideal'geometryoutsidepatientTwo-dimensional-basedbasedManchesterpredictedairkermastrengthprescriptiondoseadditionrecordedheightwidththicknesscovered100%isodoselineparameterscompared169292% ± 38%0 mm ± 26 mm8 mm ± 13 mm5 mmfrontdistancetipring5% ± 31%5 mm ± 49 mm0 mm2 mm ± 08 mmtwo13%observedturneddueusewrongsourcepositionsettingresultssuggestusefulusefulnesscarcinomauterine

Similar Articles

Cited By