Differential effects of thyroid status on regional H₂O₂ production in slow- and fast-twitch muscle of ducklings.

Benjamin Rey, Damien Roussel, Jean-Louis Rouanet, Claude Duchamp
Author Information
  1. Benjamin Rey: Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, CNRS-UMR 5558 Université Lyon 1, Villeurbanne Cedex, France. benjamin.rey@univ-lyon1.fr

Abstract

Birds seem to employ powerful physiological strategies to curb the harmful effects of reactive oxygen species (ROS) because they generally live longer than predicted by the free radical theory of aging. However, little is known about the physiological mechanisms that confer protection to birds against excessive ROS generation. Hence, we investigated the ability of birds to control mitochondrial ROS generation during physiologically stressful periods. In our study, we analyzed the relationship between the thyroid status and the function of intermyofibrillar and subsarcolemmal mitochondria located in glycolytic and oxidative muscles of ducklings. We found that the intermyofibrillar mitochondria of both glycolytic and oxidative muscles down regulate ROS production when plasma T₃ levels rise. The intermyofibrillar mitochondria of the gastrocnemius muscle (an oxidative muscle) produced less ROS and were more sensitive than the pectoralis muscle (a glycolytic muscle) to changes in plasma T₃. Such differences in the ROS production by glycolytic and oxidative muscles were associated with differences in the membrane proton permeability and in the rate of free radical leakage within the respiratory chain. This is the first evidence which shows that in birds, the amount of ROS that the mitochondria release is dependent on: (1) their location within the muscle; (2) the type of muscle (glycolytic or oxidative) and (3) on the thyroid status. Reducing muscle mitochondrial ROS generation might be an important mechanism in birds to limit oxidative damage during periods of physiological stress.

References

  1. Aging Cell. 2007 Oct;6(5):607-18 [PMID: 17596208]
  2. J Exp Biol. 2008 Feb;211(Pt 3):377-81 [PMID: 18203993]
  3. J Comp Physiol B. 2008 Sep;178(7):829-35 [PMID: 18443799]
  4. Experientia. 1992 Jun 15;48(6):565-70 [PMID: 1612136]
  5. Comp Biochem Physiol B. 1993 Sep;106(1):95-101 [PMID: 9445773]
  6. Arch Biochem Biophys. 2003 Mar 1;411(1):121-8 [PMID: 12590930]
  7. J Nutr. 2006 Aug;136(8):2194-200 [PMID: 16857840]
  8. Free Radic Biol Med. 2003 Jul 1;35(1):24-32 [PMID: 12826253]
  9. Exp Gerontol. 2000 Sep;35(6-7):811-20 [PMID: 11053672]
  10. J Exp Biol. 2002 Nov;205(Pt 22):3561-9 [PMID: 12364409]
  11. Horm Metab Res. 2003 Jan;35(1):55-61 [PMID: 12669272]
  12. Am J Physiol Cell Physiol. 2006 Mar;290(3):C844-51 [PMID: 16251473]
  13. Poult Sci. 2005 Feb;84(2):307-14 [PMID: 15742968]
  14. Exp Gerontol. 2001 Apr;36(4-6):869-83 [PMID: 11295520]
  15. FEBS Lett. 2002 Oct 9;529(2-3):313-8 [PMID: 12372620]
  16. FEBS Lett. 1998 Nov 20;439(3):258-62 [PMID: 9845333]
  17. Oecologia. 2009 Oct;161(4):673-83 [PMID: 19669166]
  18. Am J Physiol. 1993 Feb;264(2 Pt 1):C383-9 [PMID: 8383431]
  19. Cell Mol Life Sci. 2006 Feb;63(3):358-66 [PMID: 16416026]
  20. FEBS Lett. 2000 Jun 16;475(2):84-8 [PMID: 10858493]
  21. Proteomics. 2010 Sep;10(17):3142-54 [PMID: 20665633]
  22. FEBS Lett. 2001 Sep 7;505(1):53-6 [PMID: 11557041]
  23. Am J Physiol Regul Integr Comp Physiol. 2005 Dec;289(6):R1564-72 [PMID: 16051717]
  24. Am J Physiol Endocrinol Metab. 2008 Jul;295(1):E195-204 [PMID: 18492778]
  25. Am J Physiol Cell Physiol. 2012 Feb 15;302(4):C629-41 [PMID: 22031602]
  26. Am J Physiol. 1993 Nov;265(5 Pt 2):R1084-91 [PMID: 8238609]
  27. Antioxid Redox Signal. 2009 Jun;11(6):1373-414 [PMID: 19187004]
  28. BMC Physiol. 2010 Apr 28;10:5 [PMID: 20426850]
  29. FEBS Lett. 1997 Oct 13;416(1):15-8 [PMID: 9369223]
  30. Thyroid. 1995 Dec;5(6):481-92 [PMID: 8808101]
  31. Mol Cell Endocrinol. 2000 Oct 25;168(1-2):127-34 [PMID: 11064159]
  32. FEBS Lett. 2000 Jul 14;477(1-2):141-4 [PMID: 10899325]
  33. Am J Physiol Cell Physiol. 2005 Oct;289(4):C994-C1001 [PMID: 15901602]
  34. Poult Sci. 2006 Jul;85(7):1259-65 [PMID: 16830867]
  35. Thyroid. 2008 Feb;18(2):205-16 [PMID: 18279021]
  36. FEBS Lett. 2011 Jan 3;585(1):173-7 [PMID: 21095190]
  37. Am J Physiol. 1991 Dec;261(6 Pt 2):R1438-45 [PMID: 1661099]
  38. J Exp Biol. 2006 Nov;209(Pt 21):4329-38 [PMID: 17050848]

MeSH Term

Acclimatization
Animals
Animals, Inbred Strains
Cell Membrane Permeability
Cold Temperature
Ducks
France
Glycolysis
Hormone Replacement Therapy
Hydrogen Peroxide
Hypothyroidism
Male
Membrane Potential, Mitochondrial
Mitochondria, Muscle
Muscle Fibers, Fast-Twitch
Muscle Fibers, Slow-Twitch
Oxidative Phosphorylation
Oxidative Stress
Poultry Diseases
Random Allocation
Reactive Oxygen Species
Thyroid Gland
Triiodothyronine

Chemicals

Reactive Oxygen Species
Triiodothyronine
Hydrogen Peroxide

Word Cloud

Created with Highcharts 10.0.0ROSmuscleoxidativeglycolyticbirdsmitochondriaphysiologicalgenerationthyroidstatusintermyofibrillarmusclesproductioneffectsfreeradicalmitochondrialperiodsducklingsplasmaT₃differenceswithinBirdsseememploypowerfulstrategiescurbharmfulreactiveoxygenspeciesgenerallylivelongerpredictedtheoryagingHoweverlittleknownmechanismsconferprotectionexcessiveHenceinvestigatedabilitycontrolphysiologicallystressfulstudyanalyzedrelationshipfunctionsubsarcolemmallocatedfoundregulatelevelsrisegastrocnemiusproducedlesssensitivepectoralischangesassociatedmembraneprotonpermeabilityrateleakagerespiratorychainfirstevidenceshowsamountreleasedependenton:1location2type3ReducingmightimportantmechanismlimitdamagestressDifferentialregionalH₂O₂slow-fast-twitch

Similar Articles

Cited By (2)