A general binomial regression model to estimate standardized risk differences from binary response data.

Stephanie A Kovalchik, Ravi Varadhan, Barbara Fetterman, Nancy E Poitras, Sholom Wacholder, Hormuzd A Katki
Author Information
  1. Stephanie A Kovalchik: Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, U.S.A. kovalchiksa@nih.gov

Abstract

Estimates of absolute risks and risk differences are necessary for evaluating the clinical and population impact of biomedical research findings. We have developed a linear-expit regression model (LEXPIT) to incorporate linear and nonlinear risk effects to estimate absolute risk from studies of a binary outcome. The LEXPIT is a generalization of both the binomial linear and logistic regression models. The coefficients of the LEXPIT linear terms estimate adjusted risk differences, whereas the exponentiated nonlinear terms estimate residual odds ratios. The LEXPIT could be particularly useful for epidemiological studies of risk association, where adjustment for multiple confounding variables is common. We present a constrained maximum likelihood estimation algorithm that ensures the feasibility of risk estimates of the LEXPIT model and describe procedures for defining the feasible region of the parameter space, judging convergence, and evaluating boundary cases. Simulations demonstrate that the methodology is computationally robust and yields feasible, consistent estimators. We applied the LEXPIT model to estimate the absolute 5-year risk of cervical precancer or cancer associated with different Pap and human papillomavirus test results in 167,171 women undergoing screening at Kaiser Permanente Northern California. The LEXPIT model found an increased risk due to abnormal Pap test in human papillomavirus-negative that was not detected with logistic regression. Our R package blm provides free and easy-to-use software for fitting the LEXPIT model.

References

  1. Biometrics. 2003 Dec;59(4):1036-45 [PMID: 14969483]
  2. BMJ. 1995 Feb 18;310(6977):452-4 [PMID: 7873954]
  3. Stat Med. 2012 Mar 30;31(7):643-52 [PMID: 22354891]
  4. Stat Med. 2006 Dec 30;25(24):4235-40 [PMID: 16927451]
  5. J Clin Epidemiol. 1991;44(3):221-32 [PMID: 1999681]
  6. Biometrics. 2005 Sep;61(3):847-55 [PMID: 16135037]
  7. Am J Epidemiol. 1987 May;125(5):761-8 [PMID: 3551588]
  8. J Clin Epidemiol. 2010 Jan;63(1):2-6 [PMID: 19230611]
  9. Lancet Oncol. 2011 Jul;12(7):663-72 [PMID: 21684207]
  10. Am J Epidemiol. 2005 Aug 1;162(3):199-200 [PMID: 15987728]
  11. Ann Epidemiol. 2002 Oct;12(7):452-4 [PMID: 12377421]
  12. Am J Epidemiol. 1986 Jan;123(1):174-84 [PMID: 3509965]
  13. Eur J Epidemiol. 1995 Aug;11(4):365-71 [PMID: 8549701]
  14. Ann Appl Stat. 2011 Sep 1;5(3):2003-2023 [PMID: 22081781]
  15. Am J Epidemiol. 2003 May 1;157(9):815-24 [PMID: 12727675]
  16. J Natl Cancer Inst. 2009 Jan 21;101(2):88-99 [PMID: 19141778]
  17. Am J Epidemiol. 2007 Dec 1;166(11):1337-44 [PMID: 18000021]
  18. J Am Stat Assoc. 2011 Sep 1;106(495):1099-1112 [PMID: 22121305]
  19. Am J Epidemiol. 1979 Dec;110(6):693-8 [PMID: 555587]

Grants

  1. ZIA CP010188-06/Intramural NIH HHS

MeSH Term

Adult
Algorithms
Biostatistics
Case-Control Studies
Female
Human Papillomavirus DNA Tests
Humans
Likelihood Functions
Linear Models
Middle Aged
Models, Statistical
Risk Factors
Software
Uterine Cervical Neoplasms
Vaginal Smears
Uterine Cervical Dysplasia

Word Cloud

Created with Highcharts 10.0.0riskLEXPITmodelestimateregressionabsolutedifferenceslinearevaluatingnonlinearstudiesbinarybinomiallogistictermsfeasiblePaphumantestEstimatesrisksnecessaryclinicalpopulationimpactbiomedicalresearchfindingsdevelopedlinear-expitincorporateeffectsoutcomegeneralizationmodelscoefficientsadjustedwhereasexponentiatedresidualoddsratiosparticularlyusefulepidemiologicalassociationadjustmentmultipleconfoundingvariablescommonpresentconstrainedmaximumlikelihoodestimationalgorithmensuresfeasibilityestimatesdescribeproceduresdefiningregionparameterspacejudgingconvergenceboundarycasesSimulationsdemonstratemethodologycomputationallyrobustyieldsconsistentestimatorsapplied5-yearcervicalprecancercancerassociateddifferentpapillomavirusresults167171womenundergoingscreeningKaiserPermanenteNorthernCaliforniafoundincreaseddueabnormalpapillomavirus-negativedetectedRpackageblmprovidesfreeeasy-to-usesoftwarefittinggeneralstandardizedresponsedata

Similar Articles

Cited By