Spatial relations and spatial locations are dissociated within prefrontal and parietal cortex.

Christopher M Ackerman, Susan M Courtney
Author Information
  1. Christopher M Ackerman: Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218-2686, USA.

Abstract

Item-specific spatial information is essential for interacting with objects and for binding multiple features of an object together. Spatial relational information is necessary for implicit tasks such as recognizing objects or scenes from different views but also for explicit reasoning about space such as planning a route with a map and for other distinctively human traits such as tool construction. To better understand how the brain supports these two different kinds of information, we used functional MRI to directly contrast the neural encoding and maintenance of spatial relations with that for item locations in equivalent visual scenes. We found a double dissociation between the two: whereas item-specific processing implicates a frontoparietal attention network, including the superior frontal sulcus and intraparietal sulcus, relational processing preferentially recruits a cognitive control network, particularly lateral prefrontal cortex (PFC) and inferior parietal lobule. Moreover, pattern classification revealed that the actual meaning of the relation can be decoded within these same regions, most clearly in rostrolateral PFC, supporting a hierarchical, representational account of prefrontal organization.

References

  1. Curr Biol. 2007 Feb 20;17(4):323-8 [PMID: 17291759]
  2. Behav Brain Sci. 2008 Apr;31(2):109-30; discussion 130-178 [PMID: 18479531]
  3. Proc Biol Sci. 1999 Nov 7;266(1434):2225-9 [PMID: 10649637]
  4. Neuroimage. 2001 Aug;14(2):310-21 [PMID: 11467905]
  5. Neuroimage. 2001 Nov;14(5):1136-49 [PMID: 11697945]
  6. Cereb Cortex. 2007 Dec;17(12):2914-32 [PMID: 17389630]
  7. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 [PMID: 15976020]
  8. Neuroimage. 2004 Apr;21(4):1690-700 [PMID: 15050591]
  9. Neuron. 2003 Jan 23;37(2):361-7 [PMID: 12546829]
  10. Nat Neurosci. 2004 Aug;7(8):880-6 [PMID: 15235606]
  11. Neuroimage. 2001 Jan;13(1):218-29 [PMID: 11133324]
  12. Neuroimage. 2007 Jul 15;36(4):1387-96 [PMID: 17532648]
  13. Nat Rev Neurosci. 2009 Sep;10(9):659-69 [PMID: 19672274]
  14. Neuron. 2008 Jul 10;59(1):173-82 [PMID: 18614038]
  15. Neuropsychologia. 2008 Jan 31;46(2):665-78 [PMID: 18022652]
  16. Nat Rev Neurosci. 2002 Mar;3(3):201-15 [PMID: 11994752]
  17. J Neurophysiol. 2001 Nov;86(5):2505-19 [PMID: 11698538]
  18. Neuroimage. 2009 May 15;46(1):338-42 [PMID: 19457362]
  19. Neuron. 2001 May;30(2):319-33 [PMID: 11394996]
  20. J Cogn Neurosci. 2004 May;16(4):609-20 [PMID: 15165351]
  21. Neuroimage. 2005 Jun;26(2):555-64 [PMID: 15907312]
  22. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8 [PMID: 16537458]
  23. Nat Neurosci. 2002 Oct;5(10):995-1002 [PMID: 12219097]
  24. Neuroimage. 2001 Jan;13(1):210-7 [PMID: 11133323]
  25. Science. 1998 Feb 27;279(5355):1347-51 [PMID: 9478894]
  26. Atten Percept Psychophys. 2009 Oct;71(7):1525-33 [PMID: 19801613]
  27. J Neurosci. 2012 May 30;32(22):7711-22 [PMID: 22649249]
  28. Cereb Cortex. 2002 May;12(5):477-85 [PMID: 11950765]
  29. Q J Exp Psychol A. 2002 Oct;55(4):1339-62 [PMID: 12420998]
  30. Nature. 1997 Nov 20;390(6657):279-81 [PMID: 9384378]
  31. Cereb Cortex. 2002 Aug;12(8):866-76 [PMID: 12122035]
  32. Comput Biomed Res. 1996 Jun;29(3):162-73 [PMID: 8812068]
  33. Trends Cogn Sci. 2008 May;12(5):193-200 [PMID: 18403252]
  34. J Neurophysiol. 1989 Feb;61(2):331-49 [PMID: 2918358]
  35. J Neurosci. 2011 Mar 16;31(11):4087-100 [PMID: 21411650]
  36. Brain. 2010 Feb;133(Pt 2):320-32 [PMID: 19903731]
  37. Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):781-95 [PMID: 15937012]
  38. Science. 1995 Aug 18;269(5226):985-8 [PMID: 7638625]
  39. Trends Cogn Sci. 2009 Nov;13(11):488-95 [PMID: 19758835]
  40. Ann N Y Acad Sci. 1995 Dec 15;769:97-117 [PMID: 8595047]
  41. J Neurosci. 2006 Apr 26;26(17):4465-71 [PMID: 16641225]
  42. J Cogn Neurosci. 2002 Apr 1;14(3):508-23 [PMID: 11970810]
  43. Cortex. 2007 Jan;43(1):5-21 [PMID: 17334204]
  44. Trends Cogn Sci. 2012 Feb;16(2):129-35 [PMID: 22209601]
  45. J Neurophysiol. 2008 Dec;100(6):3328-42 [PMID: 18799601]
  46. Annu Rev Neurosci. 1999;22:319-49 [PMID: 10202542]
  47. Spat Vis. 1997;10(4):433-6 [PMID: 9176952]
  48. Cogn Affect Behav Neurosci. 2004 Dec;4(4):501-16 [PMID: 15849893]

Grants

  1. R01 MH082957/NIMH NIH HHS
  2. 1R01MH082957/NIMH NIH HHS

MeSH Term

Adolescent
Adult
Attention
Brain Mapping
Female
Humans
Magnetic Resonance Imaging
Male
Memory, Short-Term
Parietal Lobe
Photic Stimulation
Prefrontal Cortex
Space Perception

Word Cloud

Created with Highcharts 10.0.0spatialinformationprefrontalobjectsSpatialrelationalscenesdifferentrelationslocationsprocessingnetworksulcuscortexPFCparietalwithinItem-specificessentialinteractingbindingmultiplefeaturesobjecttogethernecessaryimplicittasksrecognizingviewsalsoexplicitreasoningspaceplanningroutemapdistinctivelyhumantraitstoolconstructionbetterunderstandbrainsupportstwokindsusedfunctionalMRIdirectlycontrastneuralencodingmaintenanceitemequivalentvisualfounddoubledissociationtwo:whereasitem-specificimplicatesfrontoparietalattentionincludingsuperiorfrontalintraparietalpreferentiallyrecruitscognitivecontrolparticularlylateralinferiorlobuleMoreoverpatternclassificationrevealedactualmeaningrelationcandecodedregionsclearlyrostrolateralsupportinghierarchicalrepresentationalaccountorganizationdissociated

Similar Articles

Cited By