Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy.

Thijn van der Heijden, Joke J F A van Vugt, Colin Logie, John van Noort
Author Information
  1. Thijn van der Heijden: Physics of Life Processes, Leiden University, Leiden, The Netherlands. Heijdent@physics.leidenuniv.nl

Abstract

Nucleosome positioning dictates eukaryotic DNA compaction and access. To predict nucleosome positions in a statistical mechanics model, we exploited the knowledge that nucleosomes favor DNA sequences with specific periodically occurring dinucleotides. Our model is the first to capture both dyad position within a few base pairs, and free binding energy within 2 k(B)T, for all the known nucleosome positioning sequences. By applying Percus's equation to the derived energy landscape, we isolate sequence effects on genome-wide nucleosome occupancy from other factors that may influence nucleosome positioning. For both in vitro and in vivo systems, three parameters suffice to predict nucleosome occupancy with correlation coefficients of respectively 0.74 and 0.66. As predicted, we find the largest deviations in vivo around transcription start sites. This relatively simple algorithm can be used to guide future studies on the influence of DNA sequence on chromatin organization.

References

  1. Nucleic Acids Res. 2011 Apr;39(8):3093-102 [PMID: 21177647]
  2. J Mol Biol. 1985 Dec 20;186(4):773-90 [PMID: 3912515]
  3. Nat Struct Mol Biol. 2010 Feb;17(2):251-7 [PMID: 20118936]
  4. Nature. 1980 Oct 9;287(5782):509-16 [PMID: 7422003]
  5. J Mol Biol. 1997 Apr 11;267(4):807-17 [PMID: 9135113]
  6. Curr Pharm Biotechnol. 2009 Aug;10(5):474-85 [PMID: 19689315]
  7. Mol Cell. 2003 Feb;11(2):391-403 [PMID: 12620227]
  8. Chembiochem. 2011 Jan 24;12(2):196-204 [PMID: 21243709]
  9. Nat Struct Mol Biol. 2010 Aug;17(8):918-20 [PMID: 20683473]
  10. Mol Cell Biol. 2003 Nov;23(21):7767-79 [PMID: 14560021]
  11. PLoS Comput Biol. 2008 Jan;4(1):e13 [PMID: 18225943]
  12. Nature. 2009 Dec 24;462(7276):1016-21 [PMID: 20033039]
  13. Nucleic Acids Res. 1986 Mar 11;14(5):2045-58 [PMID: 3008084]
  14. J Mol Biol. 1996 Jul 5;260(1):1-8 [PMID: 8676389]
  15. Biophys J. 2009 Jul 8;97(1):195-204 [PMID: 19580757]
  16. EMBO J. 1982;1(2):173-9 [PMID: 6325153]
  17. Phys Rev Lett. 2003 Oct 3;91(14):148103 [PMID: 14611559]
  18. J Mol Biol. 1998 Aug 14;281(2):253-60 [PMID: 9698546]
  19. Phys Rev Lett. 2009 Oct 30;103(18):188103 [PMID: 19905836]
  20. Methods. 2004 May;33(1):33-44 [PMID: 15039085]
  21. Nat Struct Mol Biol. 2010 Aug;17(8):923 [PMID: 20683475]
  22. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8419-23 [PMID: 3909145]
  23. J Mol Biol. 1986 Oct 20;191(4):659-75 [PMID: 3806678]
  24. J Mol Biol. 2004 May 7;338(4):695-709 [PMID: 15099738]
  25. Cell. 1987 Sep 25;50(7):1047-55 [PMID: 3304661]
  26. Biophys J. 2003 May;84(5):3197-211 [PMID: 12719249]
  27. Genome Res. 2008 Jul;18(7):1051-63 [PMID: 18477713]
  28. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15635-40 [PMID: 17893337]
  29. Phys Rev A Gen Phys. 1986 Dec;34(6):5130-5131 [PMID: 9897905]
  30. Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22257-62 [PMID: 20018700]
  31. EMBO J. 1994 Oct 17;13(20):4856-62 [PMID: 7957055]
  32. Nucleic Acids Res. 1979 Apr;6(4):1387-415 [PMID: 450700]
  33. Biochim Biophys Acta. 2007 Mar;1769(3):153-71 [PMID: 17395283]
  34. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11726-30 [PMID: 8524837]
  35. Science. 1994 Sep 9;265(5178):1599-600 [PMID: 8079175]
  36. Mol Cell Biol. 2001 Jun;21(11):3830-9 [PMID: 11340174]
  37. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1370-5 [PMID: 8643638]
  38. Q Rev Biophys. 2001 Aug;34(3):269-324 [PMID: 11838235]
  39. Nucleic Acids Res. 1998 Jun 1;26(11):2526-35 [PMID: 9592133]
  40. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10596-600 [PMID: 1961726]
  41. Proc Natl Acad Sci U S A. 1983 Jan;80(1):51-5 [PMID: 6572008]
  42. Nucleic Acids Res. 2010 Jan;38(3):709-19 [PMID: 19934265]
  43. J Biol Chem. 2011 Apr 1;286(13):11283-9 [PMID: 21303910]
  44. Bioinformatics. 2008 Jun 15;24(12):1456-8 [PMID: 18445607]
  45. EMBO J. 1995 Jun 1;14(11):2570-9 [PMID: 7781610]
  46. Nat Struct Mol Biol. 2009 Aug;16(8):847-52 [PMID: 19620965]
  47. Nat Struct Mol Biol. 2005 Feb;12(2):160-6 [PMID: 15643425]
  48. Nature. 2002 Aug 22;418(6900):897-900 [PMID: 12192415]
  49. Biophys J. 2009 Mar 18;96(6):2245-60 [PMID: 19289051]
  50. PLoS One. 2009 Jul 23;4(7):e6345 [PMID: 19626125]
  51. J Mol Biol. 2002 Jun 21;319(5):1097-113 [PMID: 12079350]
  52. Nucleic Acids Res. 2010 Sep;38(17):5672-80 [PMID: 20460457]
  53. Biochemistry. 1989 Nov 14;28(23):9129-36 [PMID: 2605246]
  54. J Mol Biol. 1998 Feb 13;276(1):19-42 [PMID: 9514715]
  55. Curr Opin Struct Biol. 2009 Feb;19(1):65-71 [PMID: 19208466]
  56. Cell. 1981 Nov;27(1 Pt 2):45-55 [PMID: 6276024]
  57. Bioinformatics. 2001 Nov;17(11):998-1010 [PMID: 11724728]
  58. PLoS Comput Biol. 2008 Nov;4(11):e1000216 [PMID: 18989395]
  59. J Biol Chem. 2004 Sep 17;279(38):39933-41 [PMID: 15262970]
  60. J Mol Biol. 2003 Mar 14;327(1):85-96 [PMID: 12614610]
  61. Nat Struct Mol Biol. 2010 Aug;17(8):920-3 [PMID: 20683474]
  62. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  63. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  64. J Mol Biol. 1995 Nov 24;254(2):130-49 [PMID: 7490738]
  65. Nature. 2008 May 15;453(7193):358-62 [PMID: 18408708]
  66. Nucleic Acids Res. 2009 Aug;37(14):4707-22 [PMID: 19509309]
  67. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11163-8 [PMID: 9736707]
  68. Nat Rev Genet. 2009 Mar;10(3):161-72 [PMID: 19204718]
  69. Nucleic Acids Res. 1988 Jul 25;16(14A):6677-90 [PMID: 3399412]
  70. J Mol Biol. 2010 Oct 15;403(1):1-10 [PMID: 20800598]
  71. Genome Res. 2008 Jul;18(7):1073-83 [PMID: 18550805]
  72. J Fluoresc. 2007 Nov;17(6):785-95 [PMID: 17609864]
  73. Nucleic Acids Res. 1980 Apr 25;8(8):1839-53 [PMID: 6253949]
  74. Nucleic Acids Res. 2008 Jun;36(11):3746-56 [PMID: 18487627]
  75. Mol Cell. 2005 Jun 10;18(6):735-48 [PMID: 15949447]
  76. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]

MeSH Term

Algorithms
Animals
Chickens
Chromatin
Chromatin Assembly and Disassembly
Computational Biology
DNA
Erythrocytes
Genome, Fungal
Histones
Models, Statistical
Nucleosomes
Nucleotides
Probability
Saccharomyces cerevisiae
Sequence Analysis, DNA
Thermodynamics
Transcription Initiation Site
Transcription, Genetic

Chemicals

Chromatin
Histones
Nucleosomes
Nucleotides
DNA

Word Cloud

Created with Highcharts 10.0.0nucleosomepositioningDNAoccupancypredictmodelsequenceswithinenergysequencegenome-wideinfluencevivo0Nucleosomedictateseukaryoticcompactionaccesspositionsstatisticalmechanicsexploitedknowledgenucleosomesfavorspecificperiodicallyoccurringdinucleotidesfirstcapturedyadpositionbasepairsfreebinding2kBTknownapplyingPercus'sequationderivedlandscapeisolateeffectsfactorsmayvitrosystemsthreeparameterssufficecorrelationcoefficientsrespectively7466predictedfindlargestdeviationsaroundtranscriptionstartsitesrelativelysimplealgorithmcanusedguidefuturestudieschromatinorganizationSequence-basedpredictionsingle

Similar Articles

Cited By