What is comparable in comparative cognition?

Lars Chittka, Stephen J Rossiter, Peter Skorupski, Chrisantha Fernando
Author Information
  1. Lars Chittka: Biological and Experimental Psychology Group, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK. l.chittka@qmul.ac.uk

Abstract

To understand how complex, or 'advanced' various forms of cognition are, and to compare them between species for evolutionary studies, we need to understand the diversity of neural-computational mechanisms that may be involved, and to identify the genetic changes that are necessary to mediate changes in cognitive functions. The same overt cognitive capacity might be mediated by entirely different neural circuitries in different species, with a many-to-one mapping between behavioural routines, computations and their neural implementations. Comparative behavioural research needs to be complemented with a bottom-up approach in which neurobiological and molecular-genetic analyses allow pinpointing of underlying neural and genetic bases that constrain cognitive variation. Often, only very minor differences in circuitry might be needed to generate major shifts in cognitive functions and the possibility that cognitive traits arise by convergence or parallel evolution needs to be taken seriously. Hereditary variation in cognitive traits between individuals of a species might be extensive, and selection experiments on cognitive traits might be a useful avenue to explore how rapidly changes in cognitive abilities occur in the face of pertinent selection pressures.

References

  1. Brain Behav Evol. 2008;71(1):1-14 [PMID: 17878714]
  2. Curr Biol. 2010 Oct 26;20(20):1834-9 [PMID: 20933423]
  3. Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2941-55 [PMID: 19720655]
  4. Trends Genet. 2009 Apr;25(4):166-77 [PMID: 19304338]
  5. Trends Cogn Sci. 2011 Sep;15(9):375-7 [PMID: 21820941]
  6. Curr Biol. 2010 Jan 26;20(2):R53-4 [PMID: 20129036]
  7. J Neurosci. 2007 Sep 19;27(38):10106-15 [PMID: 17881517]
  8. Curr Biol. 2009 Nov 17;19(21):R995-R1008 [PMID: 19922859]
  9. Proc Biol Sci. 2011 Mar 22;278(1707):885-8 [PMID: 21227971]
  10. Mol Biol Evol. 2007 Sep;24(9):2016-28 [PMID: 17609538]
  11. Behav Genet. 2010 Nov;40(6):759-67 [PMID: 20306291]
  12. Trends Cogn Sci. 2010 May;14(5):201-7 [PMID: 20363178]
  13. J Neurosci. 2003 Aug 20;23(20):7461-9 [PMID: 12930784]
  14. Nat Rev Genet. 2010 Jan;11(1):31-46 [PMID: 19997069]
  15. Proc Biol Sci. 2010 Jul 22;277(1691):2165-74 [PMID: 20236975]
  16. Heredity (Edinb). 2012 May;108(5):480-9 [PMID: 22167055]
  17. Nat Methods. 2009 Jun;6(6):451-7 [PMID: 19412169]
  18. Proc Natl Acad Sci U S A. 2011 Sep 13;108 Suppl 3:15580-7 [PMID: 21383149]
  19. Proc Biol Sci. 2007 Feb 22;274(1609):453-64 [PMID: 17476764]
  20. Nat Methods. 2007 Apr;4(4):331-6 [PMID: 17384643]
  21. Philos Trans R Soc Lond B Biol Sci. 2012 Oct 5;367(1603):2773-83 [PMID: 22927576]
  22. J Neurobiol. 2003 Jan;54(1):4-45 [PMID: 12486697]
  23. Nat Rev Neurosci. 2010 Nov;11(11):747-59 [PMID: 20959859]
  24. PLoS One. 2010 Feb 22;5(2):e9361 [PMID: 20179763]
  25. J Neurosci. 2004 Mar 31;24(13):3164-75 [PMID: 15056696]
  26. Science. 2004 Dec 10;306(5703):1903-7 [PMID: 15591194]
  27. PLoS Biol. 2007 Dec;5(12):e321 [PMID: 18052609]
  28. Curr Top Dev Biol. 2006;74:253-86 [PMID: 16860670]
  29. Zoolog Sci. 2009 Sep;26(9):587-99 [PMID: 19799509]
  30. Nature. 2002 Aug 22;418(6900):869-72 [PMID: 12192408]
  31. Philos Trans R Soc Lond B Biol Sci. 2012 Oct 5;367(1603):2753-61 [PMID: 22927574]
  32. Front Syst Neurosci. 2010 Feb 08;4:1 [PMID: 20204156]
  33. Trends Cogn Sci. 2010 Nov;14(11):477-81 [PMID: 20685155]
  34. J Comp Psychol. 1992 Jun;106(2):172-83 [PMID: 1600722]
  35. PLoS Comput Biol. 2011 Jan 06;7(1):e1001050 [PMID: 21253555]
  36. Philos Trans R Soc Lond B Biol Sci. 2011 Jul 27;366(1574):2086-99 [PMID: 21690127]
  37. Am Nat. 2001 Jul;158(1):36-48 [PMID: 18707313]
  38. Neuroscience. 2011 Feb 23;175:75-84 [PMID: 21111790]
  39. Proc Biol Sci. 2009 Jun 7;276(1664):1929-37 [PMID: 19324805]
  40. Trends Cogn Sci. 2008 May;12(5):187-92 [PMID: 18424224]
  41. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13959-64 [PMID: 18776049]
  42. PLoS Biol. 2010 Jan 26;8(1):e1000292 [PMID: 20126252]
  43. Anim Cogn. 2012 Mar;15(2):223-38 [PMID: 21927850]
  44. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 May;197(5):541-59 [PMID: 20857119]
  45. Nature. 2007 Aug 9;448(7154):709-13 [PMID: 17581587]
  46. Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8980-5 [PMID: 19470491]
  47. J Comput Neurosci. 2012 Apr;32(2):197-212 [PMID: 21698405]
  48. Science. 1994 Jul 29;265(5172):676-9 [PMID: 8036517]
  49. Neurobiol Dis. 2011 Jun;42(3):427-37 [PMID: 21324361]
  50. Curr Biol. 2011 Jan 11;21(1):1-11 [PMID: 21129968]
  51. Mol Ecol. 2010 Mar;19 Suppl 1:266-76 [PMID: 20331785]
  52. Curr Opin Neurobiol. 2011 Jun;21(3):415-24 [PMID: 21592779]
  53. J Exp Biol. 2011 Apr 1;214(Pt 7):1131-7 [PMID: 21389198]
  54. Trends Cogn Sci. 2005 May;9(5):250-7 [PMID: 15866152]
  55. Science. 2007 Mar 23;315(5819):1723-5 [PMID: 17379811]
  56. Front Psychol. 2011 Sep 21;2:244 [PMID: 21960983]
  57. Philos Trans R Soc Lond B Biol Sci. 2012 Oct 5;367(1603):2743-52 [PMID: 22927573]
  58. Am J Hum Genet. 2007 Dec;81(6):1232-50 [PMID: 17999362]
  59. Philos Trans R Soc Lond B Biol Sci. 2012 Oct 5;367(1603):2695-703 [PMID: 22927568]
  60. Nature. 2009 Apr 16;458(7240):832-3 [PMID: 19370014]
  61. J Exp Biol. 1996;199(Pt 3):653-62 [PMID: 9318388]
  62. PLoS Comput Biol. 2011 Mar;7(3):e1002009 [PMID: 21445233]
  63. Trends Cogn Sci. 2001 Feb 1;5(2):62-71 [PMID: 11166636]
  64. Curr Opin Neurobiol. 2008 Apr;18(2):185-96 [PMID: 18708140]
  65. Nature. 2005 Jun 30;435(7046):1235-8 [PMID: 15988526]
  66. Brain Behav Evol. 2007;70(2):125-36 [PMID: 17519525]
  67. J Exp Biol. 1996 Jan;199(Pt 1):173-85 [PMID: 8576689]
  68. PLoS One. 2007 Sep 19;2(9):e900 [PMID: 17878935]
  69. Curr Biol. 2008 Sep 23;18(18):R851-2 [PMID: 18812075]
  70. Proc Biol Sci. 2008 Apr 7;275(1636):803-8 [PMID: 18198141]
  71. Am J Phys Anthropol. 2002 Aug;118(4):399-401 [PMID: 12124920]
  72. Science. 1975 May 16;188(4189):699-709 [PMID: 17755167]
  73. Philos Trans R Soc Lond B Biol Sci. 2012 Oct 5;367(1603):2715-22 [PMID: 22927570]
  74. J Neurosci. 1993 Feb;13(2):808-19 [PMID: 8426238]

MeSH Term

Animals
Behavior, Animal
Behavioral Research
Biological Evolution
Brain
Cognition
Computational Biology
Computer Simulation
Humans
Nerve Net
Neurons
Phylogeny
Selection, Genetic

Word Cloud

Created with Highcharts 10.0.0cognitivemightspecieschangesneuraltraitsunderstandgeneticfunctionsdifferentbehaviouralneedsvariationselectioncomplex'advanced'variousformscognitioncompareevolutionarystudiesneeddiversityneural-computationalmechanismsmayinvolvedidentifynecessarymediateovertcapacitymediatedentirelycircuitriesmany-to-onemappingroutinescomputationsimplementationsComparativeresearchcomplementedbottom-upapproachneurobiologicalmolecular-geneticanalysesallowpinpointingunderlyingbasesconstrainOftenminordifferencescircuitryneededgeneratemajorshiftspossibilityariseconvergenceparallelevolutiontakenseriouslyHereditaryindividualsextensiveexperimentsusefulavenueexplorerapidlyabilitiesoccurfacepertinentpressurescomparablecomparativecognition?

Similar Articles

Cited By (30)