Codons support the maintenance of intrinsic DNA polymer flexibility over evolutionary timescales.

G A Babbitt, K V Schulze
Author Information
  1. G A Babbitt: TH Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA. gabsbi@rit.edu

Abstract

Despite our long familiarity with how the genetic code specifies the amino acid sequence, we still know little about why it is organized in the way that it is. Contrary to the view that the organization of the genetic code is a "frozen accident" of evolution, recent studies have demonstrated that it is highly nonrandom, with implications for both codon assignment and usage. We hypothesize that this inherent nonrandomness may facilitate the coexistence of both sequence and structural information in DNA. Here, we take advantage of a simple metric of intrinsic DNA flexibility to analyze mutational effects on the four phosphate linkages present in any given codon. Application of a simple evolutionary neutral model of substitution to random sequences, translated with alternative genetic codes, reveals that the standard code is highly optimized to favor synonymous substitutions that maximize DNA polymer flexibility, potentially counteracting neutral evolutionary drift toward stiffer DNA caused by spontaneous deamination. Comparison to existing mutational patterns in yeast also demonstrates evidence of strong selective constraint on DNA flexibility, especially at so-called "silent" sites. We also report a fundamental relationship between DNA flexibility, codon usage bias, and several important evolutionary descriptors of comparative genomics (e.g., base composition, transition/transversion ratio, and nonsynonymous vs. synonymous substitution rate). Recent advances in structural genomics have emphasized the role of the DNA polymer's flexibility in both gene function and whole genome folding, thereby implicating possible reasons for codons to facilitate the multiplexing of both genetic and structural information within the same molecular context.

References

  1. Mol Biol Evol. 1985 Jan;2(1):13-34 [PMID: 3916708]
  2. Annu Rev Genet. 2008;42:287-99 [PMID: 18983258]
  3. Bioinformatics. 2001 Mar;17(3):237-48 [PMID: 11294789]
  4. Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9033-8 [PMID: 15175431]
  5. Genome Biol Evol. 2011;3:15-22 [PMID: 21135411]
  6. J Biomol Struct Dyn. 2010 Jun;27(6):765-80 [PMID: 20232932]
  7. J Mol Evol. 2007 Oct;65(4):456-62 [PMID: 17896070]
  8. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]
  9. PLoS Genet. 2010 Sep 09;6(9):e1001107 [PMID: 20838593]
  10. J Mol Biol. 2011 Sep 30;412(4):634-46 [PMID: 21821044]
  11. PLoS Genet. 2007 Feb 2;3(2):e22 [PMID: 17274688]
  12. J Mol Biol. 2004 Mar 12;337(1):65-76 [PMID: 15001352]
  13. Curr Opin Struct Biol. 2011 Jun;21(3):342-7 [PMID: 21439813]
  14. Epigenetics Chromatin. 2010 Nov 12;3(1):20 [PMID: 21073701]
  15. Genome Biol Evol. 2012;4(4):513-22 [PMID: 22436997]
  16. Genome Res. 2007 Apr;17(4):405-12 [PMID: 17293451]
  17. Nat Rev Genet. 2009 Jul;10(7):443-56 [PMID: 19506578]
  18. Nature. 2009 Oct 29;461(7268):1225-6 [PMID: 19865161]
  19. Nat Rev Genet. 2006 Feb;7(2):98-108 [PMID: 16418745]
  20. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4482-7 [PMID: 10200288]
  21. Gene. 2004 Jun 23;335:19-23 [PMID: 15194186]
  22. Nucleic Acids Res. 1987 Feb 11;15(3):1281-95 [PMID: 3547335]
  23. Nature. 2003 May 15;423(6937):241-54 [PMID: 12748633]
  24. J Mol Evol. 1998 Sep;47(3):238-48 [PMID: 9732450]
  25. Annu Rev Genomics Hum Genet. 2009;10:285-311 [PMID: 19630562]
  26. Genome Biol. 2010;11(5):R51 [PMID: 20462404]
  27. J Mol Evol. 2004 Aug;59(2):258-66 [PMID: 15486699]
  28. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  29. Nature. 2009 Oct 29;461(7268):1248-53 [PMID: 19865164]
  30. PLoS Genet. 2009 Jul;5(7):e1000556 [PMID: 19593368]
  31. Nucleic Acids Res. 2009 Oct;37(19):6466-76 [PMID: 19700771]
  32. PLoS Genet. 2008 Nov;4(11):e1000250 [PMID: 18989456]
  33. J Mol Biol. 1968 Dec;38(3):367-79 [PMID: 4887876]
  34. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43 [PMID: 16176987]
  35. J Mol Biol. 2011 Aug 12;411(2):430-48 [PMID: 21669206]
  36. Mol Syst Biol. 2010 Oct 19;6:421 [PMID: 20959819]
  37. Genome Biol Evol. 2011;3:195-208 [PMID: 21266540]
  38. Biophys J. 2006 Dec 1;91(11):4121-32 [PMID: 16891359]
  39. J Mol Evol. 2003 Nov;57(5):533-7 [PMID: 14738311]
  40. J Mol Biol. 1966 Aug;19(2):548-55 [PMID: 5969078]
  41. Trends Genet. 2007 Jul;23(7):318-21 [PMID: 17418911]
  42. Nucleic Acids Res. 2010 Jan;38(3):1034-47 [PMID: 19920127]
  43. PLoS Comput Biol. 2010 Dec 23;6(12):e1001039 [PMID: 21203484]
  44. J Biomol Struct Dyn. 2010 Jun;27(6):843-59 [PMID: 20232937]
  45. Cell. 2008 Jul 25;134(2):341-52 [PMID: 18662548]
  46. Mol Biol Evol. 2007 Feb;24(2):374-81 [PMID: 17101719]
  47. Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3480-5 [PMID: 14990797]
  48. Science. 2009 Apr 17;324(5925):389-92 [PMID: 19286520]
  49. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11163-8 [PMID: 9736707]
  50. Nat Rev Genet. 2009 Mar;10(3):161-72 [PMID: 19204718]
  51. Genome Res. 2008 Jul;18(7):1073-83 [PMID: 18550805]
  52. J Mol Biol. 2007 Aug 17;371(3):725-38 [PMID: 17585938]
  53. Bioinformatics. 2011 Jul 1;27(13):1758-64 [PMID: 21551148]
  54. Cell. 2011 Mar 18;144(6):886-96 [PMID: 21414481]
  55. Nat Biotechnol. 2007 Jan;25(1):117-24 [PMID: 17187058]
  56. Curr Opin Genet Dev. 2002 Dec;12(6):640-9 [PMID: 12433576]

MeSH Term

Base Composition
Codon
Computational Biology
DNA
Evolution, Molecular
Genetic Linkage
Genomics
Models, Genetic
Mutation
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Selection, Genetic
Sequence Analysis, DNA

Chemicals

Codon
Saccharomyces cerevisiae Proteins
DNA

Word Cloud

Created with Highcharts 10.0.0DNAflexibilitygeneticevolutionarycodecodonstructuralsequencehighlyusagefacilitateinformationsimpleintrinsicmutationalneutralsubstitutionsynonymouspolymeralsogenomicsDespitelongfamiliarityspecifiesaminoacidstillknowlittleorganizedwayContraryvieworganization"frozenaccident"evolutionrecentstudiesdemonstratednonrandomimplicationsassignmenthypothesizeinherentnonrandomnessmaycoexistencetakeadvantagemetricanalyzeeffectsfourphosphatelinkagespresentgivenApplicationmodelrandomsequencestranslatedalternativecodesrevealsstandardoptimizedfavorsubstitutionsmaximizepotentiallycounteractingdrifttowardstiffercausedspontaneousdeaminationComparisonexistingpatternsyeastdemonstratesevidencestrongselectiveconstraintespeciallyso-called"silent"sitesreportfundamentalrelationshipbiasseveralimportantdescriptorscomparativeegbasecompositiontransition/transversionrationonsynonymousvsrateRecentadvancesemphasizedrolepolymer'sgenefunctionwholegenomefoldingtherebyimplicatingpossiblereasonscodonsmultiplexingwithinmolecularcontextCodonssupportmaintenancetimescales

Similar Articles

Cited By