Development of a scheme and tools to construct a standard moth brain for neural network simulations.

Hidetoshi Ikeno, Tomoki Kazawa, Shigehiro Namiki, Daisuke Miyamoto, Yohei Sato, Stephan Shuichi Haupt, Ikuko Nishikawa, Ryohei Kanzaki
Author Information
  1. Hidetoshi Ikeno: School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan. ikeno@shse.u-hyogo.ac.jp

Abstract

Understanding the neural mechanisms for sensing environmental information and controlling behavior in natural environments is a principal aim in neuroscience. One approach towards this goal is rebuilding neural systems by simulation. Despite their relatively simple brains compared with those of mammals, insects are capable of processing various sensory signals and generating adaptive behavior. Nevertheless, our global understanding at network system level is limited by experimental constraints. Simulations are very effective for investigating neural mechanisms when integrating both experimental data and hypotheses. However, it is still very difficult to construct a computational model at the whole brain level owing to the enormous number and complexity of the neurons. We focus on a unique behavior of the silkmoth to investigate neural mechanisms of sensory processing and behavioral control. Standard brains are used to consolidate experimental results and generate new insights through integration. In this study, we constructed a silkmoth standard brain and brain image, in which we registered segmented neuropil regions and neurons. Our original software tools for segmentation of neurons from confocal images, KNEWRiTE, and the registration module for segmented data, NeuroRegister, are shown to be very effective in neuronal registration for computational neuroscience studies.

References

  1. Prog Neurobiol. 2001 Mar;63(4):409-39 [PMID: 11163685]
  2. Chem Senses. 2003 Feb;28(2):113-30 [PMID: 12588734]
  3. J Comp Neurol. 2009 Jul 10;515(2):145-60 [PMID: 19412925]
  4. J Neurosci. 1995 Mar;15(3 Pt 1):1617-30 [PMID: 7891123]
  5. Curr Biol. 2011 Jan 11;21(1):1-11 [PMID: 21129968]
  6. Front Syst Neurosci. 2010 Feb 03;3:21 [PMID: 20161763]
  7. BMC Bioinformatics. 2010 May 21;11:274 [PMID: 20492697]
  8. J Comp Neurol. 2005 Nov 7;492(1):1-19 [PMID: 16175557]
  9. Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2387-97 [PMID: 19414461]
  10. Nat Methods. 2011 Mar;8(3):253-9 [PMID: 21297621]
  11. Neuroreport. 2009 Aug 5;20(12):1061-5 [PMID: 19550361]
  12. Cell Tissue Res. 2008 Jul;333(1):125-45 [PMID: 18504618]
  13. Cell Tissue Res. 2005 Mar;319(3):513-24 [PMID: 15672266]
  14. J Neurosci Methods. 2009 Oct 30;184(1):169-75 [PMID: 19632273]
  15. Neuroscientist. 2001 Apr;7(2):123-35 [PMID: 11496923]
  16. IEEE Trans Inf Technol Biomed. 2003 Dec;7(4):302-17 [PMID: 15000357]
  17. J Comp Neurol. 2010 Feb 1;518(3):366-88 [PMID: 19950256]
  18. Front Syst Neurosci. 2010 Mar 18;4:7 [PMID: 20339481]
  19. BMC Bioinformatics. 2006 Dec 29;7:544 [PMID: 17196102]
  20. Neural Netw. 2008 Oct;21(8):1047-55 [PMID: 18639438]
  21. Front Syst Neurosci. 2009 Oct 26;3:14 [PMID: 19949481]
  22. Curr Biol. 2002 Feb 5;12(3):227-31 [PMID: 11839276]
  23. Front Syst Neurosci. 2010 Jul 13;4: [PMID: 20827403]
  24. J Comp Neurol. 2006 Aug 20;497(6):928-58 [PMID: 16802334]
  25. Nat Methods. 2010 Jul;7(7):535-40 [PMID: 20526346]

MeSH Term

Animals
Behavior, Animal
Brain
Computer Simulation
Moths
Neural Networks, Computer
Neurons
Neuropil
Software

Word Cloud

Created with Highcharts 10.0.0neuralbrainmechanismsbehaviorexperimentalneuronsneurosciencebrainsprocessingsensorynetworkleveleffectivedataconstructcomputationalsilkmothstandardsegmentedtoolsregistrationUnderstandingsensingenvironmentalinformationcontrollingnaturalenvironmentsprincipalaimOneapproachtowardsgoalrebuildingsystemssimulationDespiterelativelysimplecomparedmammalsinsectscapablevarioussignalsgeneratingadaptiveNeverthelessglobalunderstandingsystemlimitedconstraintsSimulationsinvestigatingintegratinghypothesesHoweverstilldifficultmodelwholeowingenormousnumbercomplexityfocusuniqueinvestigatebehavioralcontrolStandardusedconsolidateresultsgeneratenewinsightsintegrationstudyconstructedimageregisteredneuropilregionsoriginalsoftwaresegmentationconfocalimagesKNEWRiTEmoduleNeuroRegistershownneuronalstudiesDevelopmentschememothsimulations

Similar Articles

Cited By