Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men.

Matthew P Harber, Adam R Konopka, Miranda K Undem, James M Hinkley, Kiril Minchev, Leonard A Kaminsky, Todd A Trappe, Scott Trappe
Author Information
  1. Matthew P Harber: Human Performance Laboratory, Ball State University, Muncie, Indiana 47306, USA. mharber@bsu.edu

Abstract

To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P < 0.05) after training in both YM (16 ± 2%) and OM (13 ± 3%). Quadriceps muscle volume, determined via MRI, was 5 ± 1 and 6 ± 1% greater (P < 0.05) after training for YM and OM, respectively, which was associated with an increase in MHC I myofiber cross-sectional area (CSA), independent of age. MHC I peak power was higher (P < 0.05) after training for both YM and OM, while MHC IIa peak power was increased (P < 0.05) with training in OM only. MHC I and MHC IIa myofiber peak and normalized (peak force/CSA) force were preserved with training in OM, while MHC I peak force/CSA and MHC IIa peak force were lower (P < 0.05) after training in YM. The age-dependent adaptations in myofiber function were not due to changes in protein content, as total muscle protein and myofibrillar protein concentration were unchanged (P > 0.05) with training. Training reduced (P < 0.05) the proportion of MHC IIx isoform, independent of age, whereas no other changes in MHC composition were observed. These data suggest relative improvements in muscle size and aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals.

References

  1. J Appl Physiol (1985). 1992 May;72(5):1780-6 [PMID: 1601786]
  2. J Appl Physiol (1985). 1998 Jun;84(6):2163-70 [PMID: 9609813]
  3. Am J Physiol. 1994 Jun;266(6 Pt 1):C1699-1713 [PMID: 8023900]
  4. Am J Physiol Regul Integr Comp Physiol. 2009 Nov;297(5):R1452-9 [PMID: 19692660]
  5. J Appl Physiol (1985). 2001 May;90(5):1663-70 [PMID: 11299253]
  6. J Appl Physiol (1985). 2000 Jul;89(1):143-52 [PMID: 10904046]
  7. Adv Exp Med Biol. 1995;384:323-38 [PMID: 8585462]
  8. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1175-82 [PMID: 7298457]
  9. J Appl Physiol (1985). 2008 Dec;105(6):1907-15 [PMID: 18927271]
  10. Am J Physiol Endocrinol Metab. 2004 Sep;287(3):E513-22 [PMID: 15149953]
  11. Fed Proc. 1987 Apr;46(5):1824-9 [PMID: 3493922]
  12. Am J Physiol Cell Physiol. 2001 Aug;281(2):C398-406 [PMID: 11443039]
  13. J Appl Physiol (1985). 1989 Jun;66(6):2844-9 [PMID: 2745349]
  14. Anal Biochem. 1983 Mar;129(2):277-87 [PMID: 6189421]
  15. FASEB J. 2010 Oct;24(10):4117-27 [PMID: 20547663]
  16. Eur J Appl Physiol. 2010 Aug;109(6):1111-8 [PMID: 20369366]
  17. J Physiol. 2003 Oct 1;552(Pt 1):47-58 [PMID: 12837929]
  18. Magn Reson Med. 2010 Dec;64(6):1713-20 [PMID: 20665894]
  19. Circulation. 2010 Aug 24;122(8):790-7 [PMID: 20697029]
  20. J Physiol. 2005 Sep 15;567(Pt 3):1021-33 [PMID: 16002437]
  21. FASEB J. 2011 Sep;25(9):3240-9 [PMID: 21613572]
  22. J Muscle Res Cell Motil. 2004;25(1):55-9 [PMID: 15160488]
  23. N Engl J Med. 2002 Mar 14;346(11):793-801 [PMID: 11893790]
  24. Med Sci Sports Exerc. 2009 Jul;41(7):1510-30 [PMID: 19516148]
  25. J Biomech. 1991;24 Suppl 1:111-22 [PMID: 1791172]
  26. Am J Physiol Regul Integr Comp Physiol. 2009 Mar;296(3):R708-14 [PMID: 19118097]
  27. J Appl Physiol (1985). 2008 Aug;105(2):629-36 [PMID: 18535124]
  28. Eur J Appl Physiol. 2005 May;94(1-2):70-5 [PMID: 15616847]
  29. J Appl Physiol (1985). 2010 May;108(5):1410-6 [PMID: 20203068]
  30. Med Sci Sports Exerc. 2001 Jan;33(1):48-56 [PMID: 11194111]
  31. J Appl Physiol (1985). 2009 May;106(5):1611-7 [PMID: 19246651]
  32. J Gerontol A Biol Sci Med Sci. 2010 Nov;65(11):1201-7 [PMID: 20566734]
  33. J Appl Physiol (1985). 2003 Jun;94(6):2188-96 [PMID: 12588786]
  34. J Appl Physiol (1985). 2006 Sep;101(3):721-7 [PMID: 16614353]
  35. Am J Physiol Regul Integr Comp Physiol. 2002 Aug;283(2):R408-16 [PMID: 12121854]
  36. Metabolism. 1991 May;40(5):545-51 [PMID: 2023542]
  37. J Gerontol A Biol Sci Med Sci. 2011 Aug;66(8):835-41 [PMID: 21659340]
  38. J Appl Physiol (1985). 1997 May;82(5):1411-5 [PMID: 9134886]
  39. J Appl Physiol (1985). 1988 Sep;65(3):1147-51 [PMID: 3182484]
  40. Eur J Appl Physiol. 2007 Jul;100(5):603-11 [PMID: 17273882]
  41. J Physiol. 1981 Feb;311:201-18 [PMID: 7264969]
  42. J Appl Physiol Respir Environ Exerc Physiol. 1984 Oct;57(4):1024-9 [PMID: 6501023]
  43. J Aging Phys Act. 2010 Jan;18(1):14-26 [PMID: 20181991]
  44. J Physiol. 1979 Jun;291:143-59 [PMID: 314510]
  45. Am J Physiol Regul Integr Comp Physiol. 2010 Nov;299(5):R1254-62 [PMID: 20720176]
  46. Eur J Appl Physiol. 2006 Jun;97(3):288-97 [PMID: 16770464]
  47. J Appl Physiol (1985). 1995 Jan;78(1):334-40 [PMID: 7713834]
  48. J Appl Physiol. 1973 Jan;34(1):107-11 [PMID: 4348914]
  49. Am J Physiol Endocrinol Metab. 2004 Jan;286(1):E92-101 [PMID: 14506079]
  50. Acta Physiol Scand. 1993 Aug;148(4):379-85 [PMID: 8213193]

Grants

  1. R15 AG032127/NIA NIH HHS
  2. AG032127/NIA NIH HHS

MeSH Term

Adaptation, Physiological
Aged
Aging
Exercise
Exercise Test
Humans
Hypertrophy
Male
Muscle Contraction
Muscle Fibers, Skeletal
Muscle Proteins
Muscle, Skeletal
Myosin Heavy Chains
Young Adult

Chemicals

Muscle Proteins
Myosin Heavy Chains

Word Cloud

Created with Highcharts 10.0.0MHCtrainingOMmuscleP005peakmyofiberYM±<IIaadaptationsskeletalaerobicexerciseproteinsizecontractileolderpowerfunctionyoung1yrmencompositionconcentrationAerobiccapacityhigherindependentageforce/CSAforceage-dependentchangesexaminepotentialage-specificphysiologyresponseseven20six743performed12wkcycleergometerMusclebiopsiesobtainedvastuslateralisdeterminepropertiesisolatedslow[myosinheavychainI]fastmyofibers162%133%QuadricepsvolumedeterminedviaMRI561%greaterrespectivelyassociatedincreasecross-sectionalareaCSAincreasednormalizedpreservedlowerduecontenttotalmyofibrillarunchanged>TrainingreducedproportionIIxisoformwhereasobserveddatasuggestrelativeimprovementssimilarshowedgeneralimprovementTraining-relatedincreasesrevealresponsivesupportuseimprovingcardiovascularhealthindividualsinduceshypertrophy

Similar Articles

Cited By