Nucleosome spacing and chromatin higher-order folding.

Sergei A Grigoryev
Author Information
  1. Sergei A Grigoryev: Department of Biochemistry and Molecular Biology; Pennsylvania State University, College of Medicine, Hershey, PA USA. sag17@psu.edu

Abstract

Packing of about two meters of the human genome DNA into chromatin occupying a several micron-sized cell nucleus requires a high degree of compaction in a manner that allows the information encoded on DNA to remain easily accessible. This packing is mediated by repeated coiling of DNA double helix around histones to form nucleosome arrays that are further folded into higher-order structures. Relatively straight DNA linkers separate the nucleosomes and the spacing between consecutive nucleosome varies between different cells and between different chromosomal loci. In a recent work ( 1) our group used a biochemically defined in vitro reconstituted system to explore how do various DNA linkers mediate nucleosome array packing into higher-order chromatin structures. For long nucleosome linkers (about 60 bp) we observed a more open chromatin structure and no effect of small linker length alterations (±2-4 bp) on chromatin folding. In striking contrast, for shorter linkers (20-32 bp) we found more compact packing with strong periodical dependence upon the linker DNA lengths. Our data together with high-resolution nucleosome position mapping provide evidence for the natural nucleosome repeats to support a chromatin architecture that, by default, restricts spontaneous folding of nucleosome arrays into compact chromatin fibers. We suggest that incomplete folding of the nucleosome arrays may promote global inter-array interactions that lead to chromatin condensation in metaphase chromosomes and heterochromatin.

References

  1. Biochem Cell Biol. 2011 Feb;89(1):24-34 [PMID: 21326360]
  2. Biophys J. 2008 Oct;95(8):3677-91 [PMID: 18658212]
  3. Biophys J. 1991 Mar;59(3):606-18 [PMID: 2049522]
  4. EMBO J. 1986 Feb;5(2):293-300 [PMID: 3011400]
  5. Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):436-47 [PMID: 22722606]
  6. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8872-7 [PMID: 18583476]
  7. Genome Res. 2010 Jan;20(1):90-100 [PMID: 19846608]
  8. Nucleus. 2012 Sep-Oct;3(5):404-10 [PMID: 22825571]
  9. Nature. 2010 Sep 30;467(7315):562-6 [PMID: 20739938]
  10. Nature. 2003 May 8;423(6936):145-50 [PMID: 12736678]
  11. Nature. 2005 Jul 7;436(7047):138-41 [PMID: 16001076]
  12. FEBS Lett. 2004 Apr 23;564(1-2):4-8 [PMID: 15094034]
  13. Cell. 2005 Dec 29;123(7):1199-212 [PMID: 16377562]
  14. Mol Cell Biol. 2008 Jun;28(11):3563-72 [PMID: 18362167]
  15. Nat Struct Mol Biol. 2010 Feb;17(2):251-7 [PMID: 20118936]
  16. PLoS Comput Biol. 2008 Sep 12;4(9):e1000175 [PMID: 18787693]
  17. Nat Struct Mol Biol. 2007 Nov;14(11):1070-6 [PMID: 17965724]
  18. Biochemistry. 1998 Oct 20;37(42):14776-87 [PMID: 9778352]
  19. Nucleic Acids Res. 1978 Apr;5(4):1179-88 [PMID: 565920]
  20. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22 [PMID: 19651606]
  21. Eur J Biochem. 1984 Oct 15;144(2):353-60 [PMID: 6489334]
  22. EMBO J. 1990 Dec;9(12):3997-4006 [PMID: 2249661]
  23. J Mol Biol. 2010 Nov 12;403(5):777-802 [PMID: 20709077]
  24. Biophys J. 2010 Mar 17;98(6):1028-37 [PMID: 20303860]
  25. J Biol Chem. 2008 Dec 12;283(50):34532-40 [PMID: 18930918]
  26. Mol Cell. 2004 Nov 19;16(4):655-61 [PMID: 15546624]
  27. Biochemistry. 2009 Nov 24;48(46):10852-7 [PMID: 19856965]
  28. J Cell Biol. 1990 Sep;111(3):795-806 [PMID: 2391364]
  29. EMBO J. 2009 Dec 2;28(23):3635-45 [PMID: 19834459]
  30. EMBO J. 2012 Apr 4;31(7):1644-53 [PMID: 22343941]
  31. Biophys Chem. 2010 May;148(1-3):56-67 [PMID: 20236753]
  32. Biochemistry. 1981 Oct 13;20(21):5966-72 [PMID: 6272832]
  33. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9021-5 [PMID: 8415647]
  34. Biochem Cell Biol. 2001;79(3):349-63 [PMID: 11467748]
  35. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6326-30 [PMID: 392519]
  36. J Biol Chem. 2012 Feb 17;287(8):5183-91 [PMID: 22157002]
  37. Science. 2011 Nov 18;334(6058):977-82 [PMID: 22096199]
  38. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1095-9 [PMID: 1736292]
  39. Science. 2004 Nov 26;306(5701):1571-3 [PMID: 15567867]
  40. J Cell Biol. 1994 Apr;125(1):1-10 [PMID: 8138564]
  41. J Biol Chem. 2009 Mar 27;284(13):8395-405 [PMID: 19144645]
  42. J Mol Biol. 1998 Feb 13;276(1):19-42 [PMID: 9514715]
  43. Nature. 2011 May 22;474(7352):516-20 [PMID: 21602827]
  44. J Cell Biol. 2009 Apr 6;185(1):87-100 [PMID: 19349581]
  45. Chromosome Res. 2006;14(1):17-25 [PMID: 16506093]
  46. Biophys J. 2002 Jun;82(6):2847-59 [PMID: 12023209]
  47. Nucleic Acids Res. 1982 Apr 10;10(7):2275-93 [PMID: 6283474]
  48. J Biol Chem. 2009 Jan 9;284(2):740-50 [PMID: 19017647]
  49. Nature. 2000 Dec 14;408(6814):877-81 [PMID: 11130729]
  50. Genes Dev. 2003 Jul 1;17(13):1617-29 [PMID: 12842912]
  51. Science. 2006 Feb 10;311(5762):844-7 [PMID: 16469925]
  52. Nature. 2012 Jun 28;486(7404):496-501 [PMID: 22722846]
  53. J Mol Biol. 2010 Oct 15;403(1):1-10 [PMID: 20800598]
  54. Chromosoma. 1999 Sep;108(5):308-16 [PMID: 10525967]
  55. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11621-5 [PMID: 7972114]
  56. EMBO J. 2012 May 16;31(10):2416-26 [PMID: 22473209]
  57. EMBO J. 2011 May 4;30(9):1778-89 [PMID: 21468033]

MeSH Term

Chromatin
DNA
Genome, Human
Histones
Humans
Models, Molecular
Nucleosomes

Chemicals

Chromatin
Histones
Nucleosomes
DNA

Word Cloud

Created with Highcharts 10.0.0chromatinnucleosomeDNAlinkersfoldingpackingarrayshigher-orderbpstructuresspacingdifferentlinkercompactPackingtwometershumangenomeoccupyingseveralmicron-sizedcellnucleusrequireshighdegreecompactionmannerallowsinformationencodedremaineasilyaccessiblemediatedrepeatedcoilingdoublehelixaroundhistonesformfoldedRelativelystraightseparatenucleosomesconsecutivevariescellschromosomallocirecentwork1groupusedbiochemicallydefinedvitroreconstitutedsystemexplorevariousmediatearraylong60observedopenstructureeffectsmalllengthalterations±2-4strikingcontrastshorter20-32foundstrongperiodicaldependenceuponlengthsdatatogetherhigh-resolutionpositionmappingprovideevidencenaturalrepeatssupportarchitecturedefaultrestrictsspontaneousfiberssuggestincompletemaypromoteglobalinter-arrayinteractionsleadcondensationmetaphasechromosomesheterochromatinNucleosome

Similar Articles

Cited By