Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development.

Ines Teichert, Gabriele Wolff, Ulrich Kück, Minou Nowrousian
Author Information
  1. Ines Teichert: Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany. ulrich.kueck@rub.de

Abstract

BACKGROUND: During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the protection and dispersal of sexual spores. Fruiting bodies contain a number of cell types not found in vegetative mycelium, and these morphological differences are thought to be mediated by changes in gene expression. However, little is known about the spatial distribution of gene expression in fungal development. Here, we used laser microdissection (LM) and RNA-seq to determine gene expression patterns in young fruiting bodies (protoperithecia) and non-reproductive mycelia of the ascomycete Sordaria macrospora.
RESULTS: Quantitative analysis showed major differences in the gene expression patterns between protoperithecia and total mycelium. Among the genes strongly up-regulated in protoperithecia were the pheromone precursor genes ppg1 and ppg2. The up-regulation was confirmed by fluorescence microscopy of egfp expression under the control of ppg1 regulatory sequences. RNA-seq analysis of protoperithecia from the sterile mutant pro1 showed that many genes that are differentially regulated in these structures are under the genetic control of transcription factor PRO1.
CONCLUSIONS: We have generated transcriptional profiles of young fungal sexual structures using a combination of LM and RNA-seq. This allowed a high spatial resolution and sensitivity, and yielded a detailed picture of gene expression during development. Our data revealed significant differences in gene expression between protoperithecia and non-reproductive mycelia, and showed that the transcription factor PRO1 is involved in the regulation of many genes expressed specifically in sexual structures. The LM/RNA-seq approach will also be relevant to other eukaryotic systems in which multicellular development is investigated.

Associated Data

GEO | GSE33668

References

  1. Mol Genet Genomics. 2006 May;275(5):492-503 [PMID: 16482473]
  2. Fungal Genet Biol. 2011 Jan;48(1):15-22 [PMID: 20433937]
  3. Eukaryot Cell. 2010 Jun;9(6):894-905 [PMID: 20435701]
  4. Mol Microbiol. 2001 Jul;41(2):299-309 [PMID: 11489119]
  5. Curr Biol. 2009 Sep 29;19(18):R840-5 [PMID: 19788875]
  6. Eur J Cell Biol. 2010 Dec;89(12):864-72 [PMID: 20739093]
  7. Fungal Genet Biol. 1997 Jun;21(3):348-63 [PMID: 9290248]
  8. Science. 2008 Jun 6;320(5881):1344-9 [PMID: 18451266]
  9. Bioinformatics. 2009 May 1;25(9):1189-91 [PMID: 19151095]
  10. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):460-5 [PMID: 20018666]
  11. Genetics. 2006 Mar;172(3):1521-33 [PMID: 16387884]
  12. PLoS Genet. 2010 Apr 08;6(4):e1000891 [PMID: 20386741]
  13. Mol Plant Microbe Interact. 2006 Nov;19(11):1240-50 [PMID: 17073306]
  14. Fungal Genet Biol. 2002 Jul;36(2):107-16 [PMID: 12081464]
  15. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1663-7 [PMID: 1689846]
  16. FEMS Microbiol Lett. 2007 Oct;275(1):62-70 [PMID: 17681008]
  17. Fungal Genet Biol. 2006 Apr;43(4):295-310 [PMID: 16504554]
  18. Methods Mol Biol. 2009;558:91-114 [PMID: 19685321]
  19. Curr Genet. 2009 Apr;55(2):185-98 [PMID: 19277664]
  20. Mol Genet Genomics. 2005 Apr;273(2):137-49 [PMID: 15778868]
  21. Plant Cell. 2012 Feb;24(2):444-62 [PMID: 22319055]
  22. Bioinformatics. 2012 Feb 15;28(4):464-9 [PMID: 22199388]
  23. Nucleic Acids Res. 2010 Aug;38(15):5075-87 [PMID: 20392818]
  24. PLoS Pathog. 2011 Oct;7(10):e1002310 [PMID: 22028654]
  25. Eukaryot Cell. 2007 May;6(5):831-43 [PMID: 17351077]
  26. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  27. BMC Microbiol. 2005 Nov 03;5:64 [PMID: 16266439]
  28. Mol Cell Biol. 1999 Jan;19(1):450-60 [PMID: 9858569]
  29. Plant Cell. 2003 Mar;15(3):583-96 [PMID: 12615934]
  30. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3010-4 [PMID: 1557406]
  31. J Zhejiang Univ Sci B. 2009 Jun;10(6):434-44 [PMID: 19489109]
  32. Nucleic Acids Res. 2010 Apr;38(6):1767-71 [PMID: 20015970]
  33. Nat Prod Rep. 2007 Apr;24(2):393-416 [PMID: 17390002]
  34. J Transl Med. 2005 Jul 25;3:28 [PMID: 16042807]
  35. Nat Genet. 2009 Feb;41(2):258-63 [PMID: 19122662]
  36. Nature. 2008 Jun 26;453(7199):1239-43 [PMID: 18488015]
  37. Fungal Genet Biol. 2007 Nov;44(11):1146-56 [PMID: 17555994]
  38. Bioinformatics. 2010 Aug 1;26(15):1918-9 [PMID: 20538728]
  39. G3 (Bethesda). 2012 Feb;2(2):261-70 [PMID: 22384404]
  40. Pest Manag Sci. 2009 May;65(5):504-11 [PMID: 19206091]
  41. Front Neurosci. 2011 Aug 12;5:98 [PMID: 21886604]
  42. Mol Microbiol. 2012 May;84(4):748-65 [PMID: 22463819]
  43. Plant Cell. 2011 Nov;23(11):3893-910 [PMID: 22045915]
  44. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  45. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-10357 [PMID: 16801547]
  46. Fungal Genet Biol. 2012 May;49(5):405-13 [PMID: 22469835]
  47. Mol Microbiol. 2007 May;64(4):923-37 [PMID: 17501918]
  48. Microb Cell Fact. 2011 Feb 11;10:8 [PMID: 21314954]
  49. Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8 [PMID: 18039703]
  50. Genome Res. 2007 Jan;17(1):69-73 [PMID: 17095711]
  51. Methods Mol Biol. 2010;638:153-63 [PMID: 20238267]
  52. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  53. Genome Biol. 2011 Aug 04;12(8):R71 [PMID: 21816052]
  54. Bioinformatics. 1998;14(9):755-63 [PMID: 9918945]
  55. BMC Bioinformatics. 2010 Aug 10;11:422 [PMID: 20698981]
  56. Eukaryot Cell. 2006 Jul;5(7):1043-56 [PMID: 16835449]
  57. Genetics. 1999 May;152(1):191-9 [PMID: 10224253]
  58. Eukaryot Cell. 2010 Sep;9(9):1300-10 [PMID: 20601439]
  59. Fungal Genet Biol. 2007 Jul;44(7):602-14 [PMID: 17092746]
  60. Adv Microb Physiol. 1993;34:147-202 [PMID: 8452092]
  61. Nat Protoc. 2006;1(2):586-603 [PMID: 17406286]
  62. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 [PMID: 9396791]
  63. Mol Syst Biol. 2011 Jun 07;7:497 [PMID: 21654674]
  64. Comput Appl Biosci. 1996 Aug;12(4):357-8 [PMID: 8902363]
  65. PLoS One. 2012;7(1):e29685 [PMID: 22291893]
  66. Mol Genet Genomics. 2006 Jul;276(1):87-100 [PMID: 16741730]
  67. Eukaryot Cell. 2002 Dec;1(6):987-99 [PMID: 12477799]

MeSH Term

Fungal Proteins
Gene Expression Regulation, Fungal
Lasers
Microdissection
Microscopy, Fluorescence
Sordariales

Chemicals

Fungal Proteins

Word Cloud

Created with Highcharts 10.0.0expressiongenedevelopmentprotoperitheciasexualRNA-seqgenesbodiesdifferencesfungalshowedstructuresfruitingmyceliumspatiallasermicrodissectionLMpatternsyoungnon-reproductivemyceliaanalysisppg1controlmanytranscriptionfactorPRO1transcriptionalBACKGROUND:filamentousascomycetesformcomplexthree-dimensionalprotectiondispersalsporesFruitingcontainnumbercelltypesfoundvegetativemorphologicalthoughtmediatedchangesHoweverlittleknowndistributionuseddetermineascomyceteSordariamacrosporaRESULTS:QuantitativemajortotalAmongstronglyup-regulatedpheromoneprecursorppg2up-regulationconfirmedfluorescencemicroscopyegfpregulatorysequencessterilemutantpro1differentiallyregulatedgeneticCONCLUSIONS:generatedprofilesusingcombinationallowedhighresolutionsensitivityyieldeddetailedpicturedatarevealedsignificantinvolvedregulationexpressedspecificallyLM/RNA-seqapproachwillalsorelevanteukaryoticsystemsmulticellularinvestigatedCombiningchartlandscape

Similar Articles

Cited By (49)