Effects of spatiotemporal stimulus properties on spike timing correlations in owl monkey primary somatosensory cortex.

Jamie L Reed, Pierre Pouget, Hui-Xin Qi, Zhiyi Zhou, Melanie R Bernard, Mark J Burish, Jon H Kaas
Author Information
  1. Jamie L Reed: Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA. jamie.l.reed@vanderbilt.edu

Abstract

The correlated discharges of cortical neurons in primary somatosensory cortex are a potential source of information about somatosensory stimuli. One aspect of neuronal correlations that has not been well studied is how the spatiotemporal properties of tactile stimuli affect the presence and magnitude of correlations. We presented single- and dual-point stimuli with varying spatiotemporal relationships to the hands of three anesthetized owl monkeys and recorded neuronal activity from 100-electrode arrays implanted in primary somatosensory cortex. Correlation magnitudes derived from joint peristimulus time histogram (JPSTH) analysis of single neuron pairs were used to determine the level of spike timing correlations under selected spatiotemporal stimulus conditions. Correlated activities between neuron pairs were commonly observed, and the proportions of correlated pairs tended to decrease with distance between the recorded neurons. Distance between stimulus sites also affected correlations. When stimuli were presented simultaneously at two sites, ∼37% of the recorded neuron pairs showed significant correlations when adjacent phalanges were stimulated, and ∼21% of the pairs were significantly correlated when nonadjacent digits were stimulated. Spatial proximity of paired stimuli also increased the average correlation magnitude. Stimulus onset asynchronies in the paired stimuli had small effects on the correlation magnitude. These results show that correlated discharges between neurons at the first level of cortical processing provide information about the relative locations of two stimuli on the hand.

References

  1. Nature. 1995 Feb 9;373(6514):515-8 [PMID: 7845462]
  2. J Vis. 2008 Nov 11;8(7):30.1-16 [PMID: 19146262]
  3. J Neurophysiol. 2004 Sep;92(3):1464-78 [PMID: 15056676]
  4. J Neurosci Methods. 2003 Aug 15;127(2):111-22 [PMID: 12906941]
  5. Nat Neurosci. 2009 Jan;12(1):70-6 [PMID: 19029885]
  6. J Comp Neurol. 1980 Aug 15;192(4):611-43 [PMID: 7419747]
  7. J Neurosci. 2001 Mar 1;21(5):1676-97 [PMID: 11222658]
  8. Prog Brain Res. 2001;130:64-72 [PMID: 11480289]
  9. Biometrics. 1986 Mar;42(1):121-30 [PMID: 3719049]
  10. Science. 2010 Jan 29;327(5965):587-90 [PMID: 20110507]
  11. Curr Med Chem. 2000 Feb;7(2):249-71 [PMID: 10637364]
  12. J Neurophysiol. 2010 Apr;103(4):2139-57 [PMID: 20164400]
  13. Brain Res Rev. 2007 Oct;55(2):264-84 [PMID: 17692925]
  14. Anesth Analg. 2003 Dec;97(6):1784-1788 [PMID: 14633560]
  15. Science. 2010 Jan 29;327(5965):584-7 [PMID: 20110506]
  16. Physiol Rev. 1983 Jan;63(1):206-31 [PMID: 6401864]
  17. J Neurosci Methods. 2000 Jul 31;100(1-2):41-51 [PMID: 11040365]
  18. J Comp Neurol. 2002 Dec 16;454(3):310-9 [PMID: 12442321]
  19. J Neurophysiol. 1999 Mar;81(3):999-1013 [PMID: 10085328]
  20. J Neurophysiol. 2001 Oct;86(4):1700-16 [PMID: 11600633]
  21. Neural Comput. 2004 Feb;16(2):251-75 [PMID: 15006096]
  22. Nat Neurosci. 2001 Jan;4(1):63-71 [PMID: 11135646]
  23. J Neurophysiol. 1984 Apr;51(4):724-44 [PMID: 6716121]
  24. J Neurophysiol. 2006 Aug;96(2):746-64 [PMID: 16835364]
  25. Exp Brain Res. 2006 Mar;169(3):311-25 [PMID: 16284753]
  26. Nat Neurosci. 2008 Jul;11(7):749-51 [PMID: 18552841]
  27. J Neurosci. 2008 Nov 26;28(48):12591-603 [PMID: 19036953]
  28. Curr Opin Neurobiol. 2009 Aug;19(4):434-8 [PMID: 19608406]
  29. Behav Brain Res. 2002 Sep 20;135(1-2):93-103 [PMID: 12356439]
  30. J Physiol. 1979 Jan;286:283-300 [PMID: 439026]
  31. J Neurophysiol. 2005 Jan;93(1):223-36 [PMID: 15282261]
  32. Nat Neurosci. 2004 Sep;7(9):982-91 [PMID: 15322549]
  33. J Comp Neurol. 1978 Sep 1;181(1):41-73 [PMID: 98537]
  34. J Neurosci. 2003 Mar 15;23(6):2416-25 [PMID: 12657701]
  35. J Neurophysiol. 2010 Dec;104(6):3136-45 [PMID: 20926605]
  36. J Neurophysiol. 2005 Sep;94(3):2239-50 [PMID: 16105958]
  37. J Physiol. 1980 Dec;309:147-55 [PMID: 7252862]
  38. Science. 2001 Feb 23;291(5508):1560-3 [PMID: 11222864]
  39. IEEE Trans Biomed Eng. 1989 Jan;36(1):4-14 [PMID: 2646211]
  40. J Neurosci. 2001 Mar 1;21(5):1795-808 [PMID: 11222669]
  41. Neural Netw. 2010 Aug;23(6):673-84 [PMID: 20472395]
  42. Nature. 2007 Aug 16;448(7155):802-6 [PMID: 17700699]
  43. Nature. 2008 Mar 13;452(7184):220-4 [PMID: 18337822]
  44. Br J Math Stat Psychol. 2006 Nov;59(Pt 2):225-55 [PMID: 17067411]
  45. J Neurosci. 2011 Mar 9;31(10):3589-601 [PMID: 21389215]
  46. J Comp Neurol. 2011 Mar 1;519(4):738-58 [PMID: 21246552]
  47. J Neurosci. 2005 Apr 6;25(14):3661-73 [PMID: 15814797]
  48. Nat Rev Neurosci. 2001 Aug;2(8):539-50 [PMID: 11483997]
  49. J Neurophysiol. 1989 May;61(5):900-17 [PMID: 2723733]
  50. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11041-6 [PMID: 12960378]
  51. J Neurophysiol. 2007 Sep;98(3):1645-61 [PMID: 17596415]
  52. J Neurophysiol. 2009 May;101(5):2279-89 [PMID: 19211656]
  53. Nature. 1996 Jun 13;381(6583):610-3 [PMID: 8637597]
  54. J Neurophysiol. 2005 Oct;94(4):2940-7 [PMID: 16160097]
  55. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10233-7 [PMID: 18632579]
  56. Exp Brain Res. 2002 Nov;147(2):227-42 [PMID: 12410338]
  57. J Neurosci. 2009 Feb 25;29(8):2384-92 [PMID: 19244514]
  58. Proc Natl Acad Sci U S A. 2012 May 8;109(19):7230-5 [PMID: 22529350]
  59. F1000 Biol Rep. 2010 Jun 16;2: [PMID: 20948790]

Grants

  1. T32 MH064913/NIMH NIH HHS
  2. T32 GM07347/NIGMS NIH HHS
  3. R01 CA094143/NCI NIH HHS
  4. R03 NS057399/NINDS NIH HHS
  5. F31 NS053231/NINDS NIH HHS
  6. R01 NS16446/NINDS NIH HHS
  7. R01 NS016446/NINDS NIH HHS
  8. R01 NS067017/NINDS NIH HHS

MeSH Term

Action Potentials
Animals
Aotidae
Electric Stimulation
Female
Male
Physical Stimulation
Somatosensory Cortex
Time Factors
Touch

Word Cloud

Created with Highcharts 10.0.0stimulicorrelationspairscorrelatedsomatosensoryspatiotemporalneuronsprimarycortexmagnituderecordedneuronstimulusdischargescorticalinformationneuronalpropertiespresentedowllevelspiketimingsitesalsotwostimulatedpairedcorrelationpotentialsourceOneaspectwellstudiedtactileaffectpresencesingle-dual-pointvaryingrelationshipshandsthreeanesthetizedmonkeysactivity100-electrodearraysimplantedCorrelationmagnitudesderivedjointperistimulustimehistogramJPSTHanalysissingleuseddetermineselectedconditionsCorrelatedactivitiescommonlyobservedproportionstendeddecreasedistanceDistanceaffectedsimultaneously∼37%showedsignificantadjacentphalanges∼21%significantlynonadjacentdigitsSpatialproximityincreasedaverageStimulusonsetasynchroniessmalleffectsresultsshowfirstprocessingproviderelativelocationshandEffectsmonkey

Similar Articles

Cited By