Foreign RNA induces the degradation of mitochondrial antiviral signaling protein (MAVS): the role of intracellular antiviral factors.

Fei Xing, Tomoh Matsumiya, Koji Onomoto, Ryo Hayakari, Tadaatsu Imaizumi, Hidemi Yoshida, Mitsutoshi Yoneyama, Takashi Fujita, Kei Satoh
Author Information
  1. Fei Xing: Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.

Abstract

Mitochondrial antiviral signaling protein (MAVS) is an essential adaptor molecule that is responsible for antiviral signaling triggered by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), leading to the induction of type I interferon in innate immunity. Previous studies have shown that certain viruses evade the innate immune response by cleaving the MAVS protein. However, little is known about how MAVS is regulated in response to foreign RNA, including both single-stranded (ss) and double-stranded (ds) RNA, because most previous reports have shown that the cleavage of MAVS is executed by proteases that are induced or activated by the invading RNA viruses. Here, we report that MAVS mRNA is degraded in response to polyinosinic-polycytidylic acid (polyI:C), a synthetic dsRNA, in A549 cells. RNA interference (RNAi) experiments revealed that both ssRNA- and dsRNA-associated pattern-recognition receptors (PRRs) were not involved in the degradation of MAVS mRNA. Foreign RNA also induced the transient degradation of the MAVS protein. In the resting state, the MAVS protein was protected from degradation by interferon regulatory factor 3 (IRF3); moreover, the dimerization of IRF3 appeared to be correlated with the rescue of protein degradation in response to polyI:C. The overexpression of MAVS enhanced interferon-β (IFN-β) expression in response to polyI:C, suggesting that the degradation of MAVS contributes to the suppression of the hyper-immune reaction in late-phase antiviral signaling. Taken together, these results suggest that the comprehensive regulation of MAVS in response to foreign RNA may be essential to antiviral host defenses.

References

  1. J Immunol. 2006 Apr 15;176(8):4894-901 [PMID: 16585585]
  2. Mol Cell. 2005 Sep 16;19(6):727-40 [PMID: 16153868]
  3. Pharmacol Ther. 2009 Nov;124(2):219-34 [PMID: 19615405]
  4. Mol Cancer Ther. 2005 May;4(5):799-805 [PMID: 15897244]
  5. Science. 2007 Nov 30;318(5855):1455-8 [PMID: 18048689]
  6. Cell Death Differ. 2008 Nov;15(11):1804-11 [PMID: 18756281]
  7. RNA Biol. 2009 Jul-Aug;6(3):305-15 [PMID: 19411840]
  8. J Immunol. 2002 Dec 15;169(12):6668-72 [PMID: 12471095]
  9. J Immunol. 2009 Mar 1;182(5):2717-25 [PMID: 19234166]
  10. Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17264-9 [PMID: 15563593]
  11. Cell. 2006 Feb 24;124(4):783-801 [PMID: 16497588]
  12. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17717-22 [PMID: 16301520]
  13. J Immunol. 2010 Apr 15;184(8):4205-14 [PMID: 20231691]
  14. J Virol. 2007 Jan;81(2):964-76 [PMID: 17093192]
  15. Nat Immunol. 2006 Feb;7(2):131-7 [PMID: 16424890]
  16. PLoS Pathog. 2011 Mar;7(3):e1001311 [PMID: 21436888]
  17. Crit Rev Immunol. 2010;30(6):489-513 [PMID: 21175414]
  18. Annu Rev Biochem. 1998;67:227-64 [PMID: 9759489]
  19. Arch Immunol Ther Exp (Warsz). 2011 Feb;59(1):41-8 [PMID: 21234810]
  20. Biochem Biophys Res Commun. 2011 Oct 7;413(4):537-40 [PMID: 21925148]
  21. Cell Res. 2012 Apr;22(4):717-27 [PMID: 22105485]
  22. Nat Immunol. 2009 Dec;10(12):1300-8 [PMID: 19881509]
  23. J Virol. 2006 Jan;80(1):218-25 [PMID: 16352546]
  24. Cell. 2005 Sep 9;122(5):669-82 [PMID: 16125763]
  25. J Immunol. 2009 Oct 1;183(7):4241-8 [PMID: 19734229]
  26. BMC Struct Biol. 2008 Feb 28;8:11 [PMID: 18307765]
  27. Nature. 2001 Oct 18;413(6857):732-8 [PMID: 11607032]
  28. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7253-8 [PMID: 17438296]
  29. Rev Med Virol. 2010 Jan;20(1):4-22 [PMID: 20041442]
  30. J Biol Chem. 1998 Jan 30;273(5):2714-20 [PMID: 9446577]
  31. EMBO J. 2006 Jul 26;25(14):3257-63 [PMID: 16858409]
  32. Nat Immunol. 2005 Oct;6(10):981-8 [PMID: 16127453]
  33. Biochem Biophys Res Commun. 2008 Oct 10;375(1):101-6 [PMID: 18692023]
  34. Nat Immunol. 2004 Jul;5(7):730-7 [PMID: 15208624]
  35. Genes Cells. 2001 Apr;6(4):375-88 [PMID: 11318879]
  36. J Virol. 2009 Nov;83(22):11581-7 [PMID: 19740998]
  37. Nucleic Acids Res. 1984 Sep 25;12(18):6951-63 [PMID: 6548307]
  38. J Immunol. 2005 Oct 15;175(8):5260-8 [PMID: 16210631]
  39. Nature. 2005 Oct 20;437(7062):1167-72 [PMID: 16177806]
  40. J Virol. 2010 Mar;84(5):2421-31 [PMID: 20032188]

MeSH Term

Adaptor Proteins, Signal Transducing
Antiviral Agents
Gene Expression Regulation
Humans
Interferon Regulatory Factor-3
Interferon-beta
Intracellular Space
Poly I-C
Protective Agents
Protein Stability
Proteolysis
RNA
RNA Stability
RNA Viruses
RNA, Messenger
Time Factors
Toll-Like Receptors
Transfection

Chemicals

Adaptor Proteins, Signal Transducing
Antiviral Agents
IRF3 protein, human
Interferon Regulatory Factor-3
MAVS protein, human
Protective Agents
RNA, Messenger
Toll-Like Receptors
RNA
Interferon-beta
Poly I-C

Word Cloud

Created with Highcharts 10.0.0MAVSRNAantiviralproteinresponsedegradationsignalingpolyI:CessentialreceptorsinterferoninnateshownvirusesforeigninducedmRNAForeignIRF3Mitochondrialadaptormoleculeresponsibletriggeredretinoicacid-induciblegene-IRIG-I-likeRLRsleadinginductiontypeimmunityPreviousstudiescertainevadeimmunecleavingHoweverlittleknownregulatedincludingsingle-strandedssdouble-strandeddspreviousreportscleavageexecutedproteasesactivatedinvadingreportdegradedpolyinosinic-polycytidylicacidsyntheticdsRNAA549cellsinterferenceRNAiexperimentsrevealedssRNA-dsRNA-associatedpattern-recognitionPRRsinvolvedalsotransientrestingstateprotectedregulatoryfactor3moreoverdimerizationappearedcorrelatedrescueoverexpressionenhancedinterferon-βIFN-βexpressionsuggestingcontributessuppressionhyper-immunereactionlate-phaseTakentogetherresultssuggestcomprehensiveregulationmayhostdefensesinducesmitochondrial:roleintracellularfactors

Similar Articles

Cited By