A computational approach to "free will" constrained by the games we play.

Kenneth T Kishida
Author Information
  1. Kenneth T Kishida: Computational Psychiatry Unit and Human Neuroimaging Laboratory, Virginia Tech Carilion Research Institute, Virginia Tech Roanoke, VA, USA.

Abstract

Human choice is not free-we are bounded by a multitude of biological constraints. Yet, within the various landscapes we face, we do express choice, preference, and varying degrees of so-called willful behavior. Moreover, it appears that the capacity for choice in humans is variable. Empirical studies aimed at investigating the experience of "free will" will benefit from theoretical disciplines that constrain the language used to frame the relevant issues. The combination of game theory and computational reinforcement learning theory with empirical methods is already beginning to provide valuable insight into the biological variables underlying capacity for choice in humans and how things may go awry in individuals with brain disorders. These disciplines operate within abstract quantitative landscapes, but have successfully been applied to investigate strategic and adaptive human choice guided by formal notions of optimal behavior. Psychiatric illness is an extreme, but interesting arena for studying human capacity for choice. The experiences and behaviors of patients suggest these individuals fundamentally suffer from a diminished capacity of willful choice. Herein, I will briefly discuss recent applications of computationally guided approaches to human choice behavior and the underlying neurobiology. These approaches can be integrated into empirical investigation at multiple temporal scales of analysis including the growing body of experiments in human functional magnetic resonance imaging (fMRI), and newly emerging sub-second electrochemical and electrophysiological measurements in the human brain. These cross-disciplinary approaches hold promise for revealing the underlying neurobiological mechanisms for the variety of choice capacity in humans.

Keywords

References

  1. Curr Opin Neurobiol. 2006 Apr;16(2):199-204 [PMID: 16563737]
  2. Science. 2008 Feb 29;319(5867):1264-7 [PMID: 18309087]
  3. Trends Cogn Sci. 2012 Jan;16(1):72-80 [PMID: 22177032]
  4. Science. 2009 Mar 13;323(5920):1496-9 [PMID: 19286561]
  5. Nature. 2003 Apr 10;422(6932):614-8 [PMID: 12687000]
  6. J Neurosci. 1996 Mar 1;16(5):1936-47 [PMID: 8774460]
  7. Neuron. 2008 Nov 6;60(3):416-9 [PMID: 18995815]
  8. Nature. 2004 Oct 14;431(7010):760-7 [PMID: 15483596]
  9. Nat Neurosci. 2002 Feb;5(2):97-8 [PMID: 11802175]
  10. Neuron. 2011 Mar 24;69(6):1204-15 [PMID: 21435563]
  11. Nat Neurosci. 2005 Dec;8(12):1704-11 [PMID: 16286932]
  12. Biol Psychiatry. 2012 Jul 15;72(2):93-100 [PMID: 22507699]
  13. Cognition. 2009 Dec;113(3):314-328 [PMID: 19285311]
  14. Neuroscientist. 2004 Jun;10(3):260-8 [PMID: 15155064]
  15. Science. 1997 Mar 14;275(5306):1593-9 [PMID: 9054347]
  16. Nat Methods. 2010 Feb;7(2):126-9 [PMID: 20037591]
  17. Annu Rev Neurosci. 2006;29:417-48 [PMID: 16776592]
  18. Annu Rev Neurosci. 2012;35:287-308 [PMID: 22462543]
  19. Trends Cogn Sci. 2009 Aug;13(8):341-7 [PMID: 19646918]
  20. J Neurosci. 2012 May 23;32(21):7311-5 [PMID: 22623676]
  21. PLoS One. 2011;6(8):e23291 [PMID: 21829726]
  22. Neuron. 2008 Nov 6;60(3):489-95 [PMID: 18995824]
  23. Neuron. 2002 Oct 10;36(2):265-84 [PMID: 12383781]
  24. Neural Netw. 2006 Oct;19(8):1153-60 [PMID: 16938432]
  25. Proc Natl Acad Sci U S A. 2007 May 29;104(22):9493-8 [PMID: 17519340]
  26. Nat Neurosci. 2011 Feb;14(2):154-62 [PMID: 21270784]
  27. Neuron. 2010 Aug 26;67(4):543-54 [PMID: 20797532]
  28. Nat Neurosci. 2008 Apr;11(4):514-20 [PMID: 18311134]
  29. J Neurosci. 2001 Apr 15;21(8):2793-8 [PMID: 11306631]
  30. Science. 2004 Oct 15;306(5695):447-52 [PMID: 15486291]
  31. Neuron. 2003 Apr 24;38(2):339-46 [PMID: 12718866]

Grants

  1. R01 DA011723/NIDA NIH HHS
  2. R01 MH085496/NIMH NIH HHS
  3. T32 NS043124/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0choicehumancapacitycomputationalbehaviorhumanswilltheoryunderlyingapproachesbiologicalwithinlandscapeswillful"freewill"disciplinesreinforcementlearningempiricalindividualsbrainguidedfMRIHumanfree-weboundedmultitudeconstraintsYetvariousfaceexpresspreferencevaryingdegreesso-calledMoreoverappearsvariableEmpiricalstudiesaimedinvestigatingexperiencebenefittheoreticalconstrainlanguageusedframerelevantissuescombinationgamemethodsalreadybeginningprovidevaluableinsightvariablesthingsmaygoawrydisordersoperateabstractquantitativesuccessfullyappliedinvestigatestrategicadaptiveformalnotionsoptimalPsychiatricillnessextremeinterestingarenastudyingexperiencesbehaviorspatientssuggestfundamentallysufferdiminishedHereinbrieflydiscussrecentapplicationscomputationallyneurobiologycanintegratedinvestigationmultipletemporalscalesanalysisincludinggrowingbodyexperimentsfunctionalmagneticresonanceimagingnewlyemergingsub-secondelectrochemicalelectrophysiologicalmeasurementscross-disciplinaryholdpromiserevealingneurobiologicalmechanismsvarietyapproachconstrainedgamesplaypsychiatrydopamineelectrochemistryfreedecision-makingneuroeconomics

Similar Articles

Cited By