Optimizing the performance of local canonical correlation analysis in fMRI using spatial constraints.

Dietmar Cordes, Mingwu Jin, Tim Curran, Rajesh Nandy
Author Information
  1. Dietmar Cordes: Department of Radiology, School of Medicine, University of Colorado-Denver, Colorado, USA. dietmar.cordes@UCDenver.edu

Abstract

The benefits of locally adaptive statistical methods for fMRI research have been shown in recent years, as these methods are more proficient in detecting brain activations in a noisy environment. One such method is local canonical correlation analysis (CCA), which investigates a group of neighboring voxels instead of looking at the single voxel time course. The value of a suitable test statistic is used as a measure of activation. It is customary to assign the value to the center voxel for convenience. The method without constraints is prone to artifacts, especially in a region of localized strong activation. To compensate for these deficiencies, the impact of different spatial constraints in CCA on sensitivity and specificity are investigated. The ability of constrained CCA (cCCA) to detect activation patterns in an episodic memory task has been studied. This research shows how any arbitrary contrast of interest can be analyzed by cCCA and how accurate P-values optimized for the contrast of interest can be computed using nonparametric methods. Results indicate an increase of up to 20% in detecting activation patterns for some of the advanced cCCA methods, as measured by ROC curves derived from simulated and real fMRI data.

References

  1. Neuroimage. 1999 Mar;9(3):311-29 [PMID: 10075901]
  2. AJNR Am J Neuroradiol. 2001 Aug;22(7):1326-33 [PMID: 11498421]
  3. Magn Reson Med. 2003 Aug;50(2):354-65 [PMID: 12876712]
  4. IEEE Trans Med Imaging. 2001 Feb;20(2):86-93 [PMID: 11321593]
  5. Magn Reson Med. 2004 Dec;52(6):1424-31 [PMID: 15562482]
  6. Magn Reson Med. 2003 Jun;49(6):1152-62 [PMID: 12768594]
  7. Neuroimage. 2006 Oct 15;33(1):55-62 [PMID: 16891126]
  8. Neuroimage. 2008 Jun;41(2):408-23 [PMID: 18387821]
  9. Magn Reson Med. 2001 Feb;45(2):323-30 [PMID: 11180440]
  10. Neuroimage. 2003 Jul;19(3):837-45 [PMID: 12880812]
  11. Neuroimage. 2007 Dec;38(4):666-8 [PMID: 17976583]
  12. Neuroimage. 2010 Apr 15;50(3):1126-41 [PMID: 20026230]
  13. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8 [PMID: 16537458]
  14. Neuroimage. 2007 Feb 15;34(4):1562-76 [PMID: 17196400]
  15. IEEE Trans Med Imaging. 1998 Apr;17(2):142-54 [PMID: 9688147]
  16. Neuroimage. 2006 Mar;30(1):144-50 [PMID: 16257235]
  17. Hum Brain Mapp. 2009 Aug;30(8):2595-605 [PMID: 19172652]
  18. Neuroimage. 2006 Nov 1;33(2):564-9 [PMID: 16942890]
  19. J Magn Reson Imaging. 2009 Jan;29(1):146-54 [PMID: 19097096]
  20. Neuroimage. 2007 Dec;38(4):649-62 [PMID: 17804260]
  21. Magn Reson Imaging. 2007 Nov;25(9):1237-48 [PMID: 17509787]
  22. Neuroimage. 2007 Jan 1;34(1):127-36 [PMID: 17070706]
  23. Hum Brain Mapp. 2004 Sep;23(1):1-25 [PMID: 15281138]
  24. Neuroimage. 2005 Jan 15;24(2):350-62 [PMID: 15627578]
  25. Hum Brain Mapp. 2001 Feb;12(2):61-78 [PMID: 11169871]
  26. Magn Reson Med. 2004 Oct;52(4):947-52 [PMID: 15389937]
  27. Neuroimage. 2007 Dec;38(4):677-95 [PMID: 17869542]
  28. Neuroimage. 2007 Feb 1;34(3):1108-25 [PMID: 17157034]
  29. J Neurosci Methods. 2009 Apr 15;178(2):357-65 [PMID: 19135087]
  30. Neuroimage. 2004 May;22(1):252-7 [PMID: 15110015]

Grants

  1. R21 AG026635/NIA NIH HHS
  2. R21 AG026635-01A2/NIA NIH HHS
  3. R21 AG026635-02/NIA NIH HHS
  4. 1R21AG026635/NIA NIH HHS

MeSH Term

Algorithms
Area Under Curve
Artifacts
Brain Mapping
Humans
Image Interpretation, Computer-Assisted
Magnetic Resonance Imaging
Models, Neurological
Models, Theoretical
ROC Curve
Sensitivity and Specificity

Word Cloud

Created with Highcharts 10.0.0methodsactivationfMRICCAconstraintscCCAresearchdetectingmethodlocalcanonicalcorrelationanalysisvoxelvaluespatialpatternscontrastinterestcanusingbenefitslocallyadaptivestatisticalshownrecentyearsproficientbrainactivationsnoisyenvironmentOneinvestigatesgroupneighboringvoxelsinsteadlookingsingletimecoursesuitableteststatisticusedmeasurecustomaryassigncenterconveniencewithoutproneartifactsespeciallyregionlocalizedstrongcompensatedeficienciesimpactdifferentsensitivityspecificityinvestigatedabilityconstraineddetectepisodicmemorytaskstudiedshowsarbitraryanalyzedaccurateP-valuesoptimizedcomputednonparametricResultsindicateincrease20%advancedmeasuredROCcurvesderivedsimulatedrealdataOptimizingperformance

Similar Articles

Cited By