Towards effective and safe immunotherapy after allogeneic stem cell transplantation: identification of hematopoietic-specific minor histocompatibility antigen UTA2-1.

R Oostvogels, M C Minnema, M van Elk, R M Spaapen, G D te Raa, B Giovannone, A Buijs, D van Baarle, A P Kater, M Griffioen, E Spierings, H M Lokhorst, T Mutis
Author Information
  1. R Oostvogels: Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.

Abstract

Donor T cells directed at hematopoietic system-specific minor histocompatibility antigens (mHags) are considered important cellular tools to induce therapeutic graft-versus-tumor (GvT) effects with low risk of graft-versus-host disease after allogeneic stem cell transplantation. To enable the clinical evaluation of the concept of mHag-based immunotherapy and subsequent broad implementation, the identification of more hematopoietic mHags with broad applicability is imperative. Here we describe novel mHag UTA2-1 with ideal characteristics for this purpose. We identified this antigen using genome-wide zygosity-genotype correlation analysis of a mHag-specific CD8(+) cytotoxic T lymphocyte (CTL) clone derived from a multiple myeloma patient who achieved a long-lasting complete remission after donor lymphocyte infusion from an human leukocyte antigen (HLA)-matched sibling. UTA2-1 is a polymorphic peptide presented by the common HLA molecule HLA-A*02:01, which is encoded by the bi-allelic hematopoietic-specific gene C12orf35. Tetramer analyses demonstrated an expansion of UTA2-1-directed T cells in patient blood samples after several donor T-cell infusions that mediated clinical GvT responses. More importantly, UTA2-1-specific CTL effectively lysed mHag(+) hematopoietic cells, including patient myeloma cells, without affecting non-hematopoietic cells. Thus, with the capacity to induce relevant immunotherapeutic CTLs, it's HLA-A*02 restriction and equally balanced phenotype frequency, UTA2-1 is a highly valuable mHag to facilitate clinical application of mHag-based immunotherapy.

References

  1. Eur J Immunol. 2001 Mar;31(3):677-86 [PMID: 11241270]
  2. Science. 1998 Feb 13;279(5353):1054-7 [PMID: 9461441]
  3. Genome Biol. 2009;10(11):R130 [PMID: 19919682]
  4. Br J Haematol. 2009 Dec;147(5):614-33 [PMID: 19735262]
  5. J Clin Invest. 2005 Dec;115(12):3506-16 [PMID: 16322791]
  6. Clin Cancer Res. 2007 Jul 1;13(13):4009-15 [PMID: 17606735]
  7. J Clin Invest. 2005 Dec;115(12):3397-400 [PMID: 16322786]
  8. Clin Cancer Res. 2009 Dec 1;15(23):7137-43 [PMID: 19934307]
  9. Science. 1995 Jun 9;268(5216):1476-80 [PMID: 7539551]
  10. Blood. 2008 Mar 15;111(6):3286-94 [PMID: 18178869]
  11. Cancer Sci. 2007 Aug;98(8):1139-46 [PMID: 17521316]
  12. Clin Cancer Res. 2005 Mar 1;11(5):1694-703 [PMID: 15755990]
  13. J Exp Med. 1999 Jan 18;189(2):301-8 [PMID: 9892612]
  14. Clin Cancer Res. 2010 Nov 15;16(22):5481-8 [PMID: 21062930]
  15. J Immunol Methods. 2005 Feb;297(1-2):39-52 [PMID: 15777929]
  16. Best Pract Res Clin Haematol. 2008 Sep;21(3):543-57 [PMID: 18790454]
  17. PLoS One. 2011;6(8):e22523 [PMID: 21850230]
  18. Leukemia. 2010 Jul;24(7):1388-92 [PMID: 20508613]
  19. Leukemia. 2006 Feb;20(2):371-4 [PMID: 16357839]
  20. J Immunother. 2006 May-Jun;29(3):233-40 [PMID: 16699366]
  21. Lancet Oncol. 2012 Jan;13(1):e32-42 [PMID: 22225723]
  22. Blood. 2010 May 13;115(19):3869-78 [PMID: 20071660]
  23. Immunol Rev. 1997 Jun;157:125-40 [PMID: 9255626]
  24. Methods Mol Biol. 2012;882:509-30 [PMID: 22665253]
  25. J Clin Oncol. 2010 Oct 10;28(29):4521-30 [PMID: 20697091]
  26. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2742-7 [PMID: 12601144]
  27. J Immunol Methods. 2003 Oct 1;281(1-2):65-78 [PMID: 14580882]
  28. J Exp Med. 2008 Nov 24;205(12):2863-72 [PMID: 19001137]
  29. Blood. 2008 Dec 1;112(12):4371-83 [PMID: 19029455]
  30. Tissue Antigens. 2002 Apr;59(4):293-303 [PMID: 12135428]
  31. Haematologica. 2011 Feb;96(2):284-90 [PMID: 21109694]
  32. Cancer Res. 2010 Nov 15;70(22):9073-83 [PMID: 21062987]
  33. Blood. 2010 Jun 10;115(23):4923-33 [PMID: 20203263]
  34. PLoS One. 2006 Dec 20;1:e42 [PMID: 17183671]
  35. Cancer Res. 2012 Feb 15;72(4):887-96 [PMID: 22205715]
  36. Blood. 2006 May 1;107(9):3779-86 [PMID: 16391015]

MeSH Term

Apoptosis
Biomarkers, Tumor
Blotting, Western
Cell Proliferation
Enzyme-Linked Immunosorbent Assay
Flow Cytometry
Gene Expression Profiling
Graft vs Host Disease
Graft vs Leukemia Effect
HLA Antigens
Hematopoietic Stem Cell Transplantation
Humans
Immunoenzyme Techniques
Immunotherapy
Male
Middle Aged
Minor Histocompatibility Antigens
Multiple Myeloma
Oligonucleotide Array Sequence Analysis
RNA, Messenger
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
T-Lymphocytes, Cytotoxic
Transplantation, Homologous

Chemicals

Biomarkers, Tumor
HLA Antigens
Minor Histocompatibility Antigens
RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0cellsUTA2-1ThematopoieticclinicalimmunotherapymHagantigenpatientminorhistocompatibilitymHagsinduceGvTallogeneicstemcellmHag-basedbroadidentification+lymphocyteCTLmyelomadonorHLAhematopoietic-specificDonordirectedsystem-specificantigensconsideredimportantcellulartoolstherapeuticgraft-versus-tumoreffectslowriskgraft-versus-hostdiseasetransplantationenableevaluationconceptsubsequentimplementationapplicabilityimperativedescribenovelidealcharacteristicspurposeidentifiedusinggenome-widezygosity-genotypecorrelationanalysismHag-specificCD8cytotoxicclonederivedmultipleachievedlong-lastingcompleteremissioninfusionhumanleukocyte-matchedsiblingpolymorphicpeptidepresentedcommonmoleculeHLA-A*02:01encodedbi-allelicgeneC12orf35TetrameranalysesdemonstratedexpansionUTA2-1-directedbloodsamplesseveralT-cellinfusionsmediatedresponsesimportantlyUTA2-1-specificeffectivelylysedincludingwithoutaffectingnon-hematopoieticThuscapacityrelevantimmunotherapeuticCTLsHLA-A*02restrictionequallybalancedphenotypefrequencyhighlyvaluablefacilitateapplicationTowardseffectivesafetransplantation:

Similar Articles

Cited By