A least trimmed square regression method for second level FMRI effective connectivity analysis.

Xingfeng Li, Damien Coyle, Liam Maguire, Thomas Martin McGinnity
Author Information
  1. Xingfeng Li: Intelligent Systems Research Centre, University of Ulster at Magee, Derry, UK. x.li@ulster.ac.uk

Abstract

We present a least trimmed square (LTS) robust regression method to combine different runs/subjects for second/high level effective connectivity analysis. The basic idea of this method is to treat the extreme nonlinear model variability as outliers if they exceed a certain threshold. A bootstrap method for the LTS estimation is employed to detect model outliers. We compared the LTS robust method with a non-robust method using simulated and real datasets. The difference between LTS and the non-robust method for second level effective connectivity analysis is significant, suggesting the conventional non-robust method is easily affected by the model variability from the first level analysis. In addition, after these outliers are detected and excluded for the high level analysis, the model coefficients of the second level are combined within the framework of a mixed model. The variance of the mixed model is estimated using the Newton-Raphson (NR) type Levenberg-Marquardt algorithm. Three sets of real data are adopted to compare conventional methods which do not include random effects in the analysis with a mixed model for second level effective connectivity analysis. The results show that the conventional method is significantly different from the mixed model when greater model variability exists, suggesting there is a strong random effect, and the mixed model should be employed for the second level effective connectivity analysis.

References

  1. Prog Neurobiol. 2005 Sep-Oct;77(1-2):1-37 [PMID: 16289760]
  2. Cereb Cortex. 2000 May;10(5):454-63 [PMID: 10847595]
  3. Science. 1995 May 12;268(5212):889-93 [PMID: 7754376]
  4. Neuroimage. 2003 Aug;19(4):1477-91 [PMID: 12948704]
  5. Eur J Neurosci. 2007 Mar;25(5):1265-77 [PMID: 17425555]
  6. Cereb Cortex. 1997 Mar;7(2):181-92 [PMID: 9087826]
  7. Neuroimage. 2005 Jan 1;24(1):244-52 [PMID: 15588616]
  8. Neuroimage. 2011 Sep 15;58(2):339-61 [PMID: 21477655]
  9. Neuroimage. 2010 Sep;52(3):884-96 [PMID: 20004248]
  10. Eur J Neurosci. 2008 Nov;28(9):1911-23 [PMID: 18973604]
  11. Neuroimage. 2010 Oct 1;52(4):1390-400 [PMID: 20472078]
  12. Invest Ophthalmol Vis Sci. 2007 Apr;48(4):1575-91 [PMID: 17389487]
  13. Neuroimage. 2002 Dec;17(4):1665-83 [PMID: 12498741]
  14. Neuroimage. 2005 Mar;25(1):230-42 [PMID: 15734358]
  15. Eur J Neurosci. 2009 Mar;29(5):1064-70 [PMID: 19291231]
  16. Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):969-81 [PMID: 16087441]
  17. Ann Biomed Eng. 2008 Mar;36(3):381-95 [PMID: 18228143]
  18. Med Image Anal. 2010 Feb;14(1):30-8 [PMID: 19850507]
  19. Neuroimage. 2003 Oct;20(2):962-74 [PMID: 14568466]
  20. IEEE Trans Med Imaging. 2011 Jul;30(7):1365-80 [PMID: 21335308]

MeSH Term

Brain
Functional Neuroimaging
Humans
Image Processing, Computer-Assisted
Least-Squares Analysis
Magnetic Resonance Imaging
Nonlinear Dynamics
Regression Analysis

Word Cloud

Created with Highcharts 10.0.0modelmethodlevelanalysiseffectiveconnectivitysecondmixedLTSvariabilityoutliersnon-robustconventionalleasttrimmedsquarerobustregressiondifferentemployedusingrealsuggestingrandompresentcombineruns/subjectssecond/highbasicideatreatextremenonlinearexceedcertainthresholdbootstrapestimationdetectcomparedsimulateddatasetsdifferencesignificanteasilyaffectedfirstadditiondetectedexcludedhighcoefficientscombinedwithinframeworkvarianceestimatedNewton-RaphsonNRtypeLevenberg-MarquardtalgorithmThreesetsdataadoptedcomparemethodsincludeeffectsresultsshowsignificantlygreaterexistsstrongeffectFMRI

Similar Articles

Cited By