Osmoprotection of Bacillus subtilis through import and proteolysis of proline-containing peptides.

Adrienne Zaprasis, Jeanette Brill, Marietta Thüring, Guido Wünsche, Magnus Heun, Helena Barzantny, Tamara Hoffmann, Erhard Bremer
Author Information
  1. Adrienne Zaprasis: Philipps University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany.

Abstract

Bacillus subtilis can attain cellular protection against the detrimental effects of high osmolarity through osmotically induced de novo synthesis and uptake of the compatible solute l-proline. We have now found that B. subtilis can also exploit exogenously provided proline-containing peptides of various lengths and compositions as osmoprotectants. Osmoprotection by these types of peptides is generally dependent on their import via the peptide transport systems (Dpp, Opp, App, and DtpT) operating in B. subtilis and relies on their hydrolysis to liberate proline. The effectiveness with which proline-containing peptides confer osmoprotection varies considerably, and this can be correlated with the amount of the liberated and subsequently accumulated free proline by the osmotically stressed cell. Through gene disruption experiments, growth studies, and the quantification of the intracellular proline pool, we have identified the PapA (YqhT) and PapB (YkvY) peptidases as responsible for the hydrolysis of various types of Xaa-Pro dipeptides and Xaa-Pro-Xaa tripeptides. The PapA and PapB peptidases possess overlapping substrate specificities. In contrast, osmoprotection by peptides of various lengths and compositions with a proline residue positioned at their N terminus was not affected by defects in the PapA and PapB peptidases. Taken together, our data provide new insight into the physiology of the osmotic stress response of B. subtilis. They illustrate the flexibility of this ubiquitously distributed microorganism to effectively exploit environmental resources in its acclimatization to sustained high-osmolarity surroundings through the accumulation of compatible solutes.

References

  1. Nat Rev Microbiol. 2007 Jun;5(6):431-40 [PMID: 17505523]
  2. EMBO J. 2012 Aug 15;31(16):3411-21 [PMID: 22659829]
  3. PLoS Genet. 2008 Aug 01;4(8):e1000139 [PMID: 18670626]
  4. Environ Microbiol. 2011 Aug;13(8):1908-23 [PMID: 21054738]
  5. J Bacteriol. 2005 Feb;187(4):1293-304 [PMID: 15687193]
  6. J Bacteriol. 1994 Sep;176(17):5364-71 [PMID: 8071213]
  7. J Mol Biol. 2011 Oct 21;413(2):321-36 [PMID: 21840319]
  8. Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13265-6 [PMID: 16938858]
  9. Chem Rev. 2002 Dec;102(12):4581-608 [PMID: 12475202]
  10. J Bacteriol. 2007 Jul;189(14):5119-29 [PMID: 17496096]
  11. Mol Microbiol. 2003 Sep;49(6):1685-97 [PMID: 12950930]
  12. J Bacteriol. 2008 Oct;190(20):6668-75 [PMID: 18689487]
  13. J Bacteriol. 2001 Jul;183(14):4389-92 [PMID: 11418582]
  14. Microbiology (Reading). 1997 Oct;143 ( Pt 10):3231-3240 [PMID: 9353924]
  15. J Gen Microbiol. 1990 Dec;136(12):2521-6 [PMID: 2127801]
  16. Microb Cell Fact. 2011 Aug 30;10 Suppl 1:S9 [PMID: 21995521]
  17. Appl Environ Microbiol. 2002 Feb;68(2):772-83 [PMID: 11823218]
  18. Nature. 1975 Oct 2;257(5525):398-400 [PMID: 241020]
  19. Nucleic Acids Res. 2000 Aug 1;28(15):2919-26 [PMID: 10908355]
  20. Appl Environ Microbiol. 1999 Dec;65(12):5272-8 [PMID: 10583976]
  21. J Bacteriol. 2012 Feb;194(4):745-58 [PMID: 22139509]
  22. Mol Microbiol. 1991 Jan;5(1):173-85 [PMID: 1901616]
  23. J Bacteriol. 2011 Nov;193(22):6197-206 [PMID: 21908671]
  24. Nucleic Acids Res. 2012 Jan;40(Database issue):D1278-87 [PMID: 22096228]
  25. J Bacteriol. 1991 Feb;173(4):1388-98 [PMID: 1899858]
  26. Nat Rev Microbiol. 2008 Aug;6(8):613-24 [PMID: 18628769]
  27. Nucleic Acids Res. 2011 Jan;39(Database issue):D670-6 [PMID: 21062828]
  28. Mol Microbiol. 2012 Jul;85(2):213-24 [PMID: 22625175]
  29. Gene. 1995 Dec 29;167(1-2):335-6 [PMID: 8566804]
  30. J Bacteriol. 2001 Dec;183(24):7329-40 [PMID: 11717292]
  31. Nat Rev Microbiol. 2007 Dec;5(12):917-27 [PMID: 17982469]
  32. Peptides. 2001 Oct;22(10):1541-7 [PMID: 11587783]
  33. Appl Environ Microbiol. 2008 Sep;74(17):5556-62 [PMID: 18641148]
  34. Appl Environ Microbiol. 1995 Jan;61(1):226-33 [PMID: 7887604]
  35. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3472-7 [PMID: 9520390]
  36. Nucleic Acids Res. 2012 Jan;40(Database issue):D343-50 [PMID: 22086950]
  37. Nucleic Acids Res. 2002 Jan 15;30(2):E2 [PMID: 11788728]
  38. J Gen Microbiol. 1990 Dec;136(12):2527-35 [PMID: 2127802]
  39. Microbiology (Reading). 1995 Jan;141 ( Pt 1):41-9 [PMID: 7894718]
  40. Arch Biochem Biophys. 2004 Sep 15;429(2):224-30 [PMID: 15313226]
  41. Mol Microbiol. 1994 Aug;13(3):417-26 [PMID: 7997159]
  42. J Bacteriol. 2003 Feb;185(4):1289-98 [PMID: 12562800]
  43. Appl Environ Microbiol. 2012 Aug;78(16):5753-62 [PMID: 22685134]
  44. Trends Microbiol. 2008 Jun;16(6):269-75 [PMID: 18467096]
  45. J Bacteriol. 1995 May;177(10):2721-6 [PMID: 7751281]
  46. Microbiology (Reading). 2009 Jun;155(Pt 6):1758-1775 [PMID: 19383706]
  47. Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13357-61 [PMID: 16899544]
  48. J Appl Microbiol. 2003;95(2):372-9 [PMID: 12859771]
  49. Mol Microbiol. 1998 Jul;29(1):285-96 [PMID: 9701821]
  50. J Bacteriol. 2011 Oct;193(19):5335-46 [PMID: 21784929]
  51. J Bacteriol. 2010 Feb;192(3):870-82 [PMID: 19948795]
  52. Bioinformatics. 2006 Jan 15;22(2):195-201 [PMID: 16301204]
  53. Arch Microbiol. 1998 Oct;170(5):319-30 [PMID: 9818351]
  54. J Bacteriol. 1981 Sep;147(3):820-6 [PMID: 6268609]
  55. Int J Food Microbiol. 2007 Apr 20;115(3):335-42 [PMID: 17320992]
  56. Mol Microbiol. 1991 Aug;5(8):1903-13 [PMID: 1766370]
  57. J Mol Biol. 2005 Jan 28;345(4):879-92 [PMID: 15588833]
  58. Microbiol Rev. 1989 Mar;53(1):121-47 [PMID: 2651863]
  59. Biochemistry. 2004 Mar 16;43(10):2771-83 [PMID: 15005612]
  60. J Biol Chem. 2007 Oct 26;282(43):31147-55 [PMID: 17636255]
  61. J Bacteriol. 2011 Apr;193(7):1552-62 [PMID: 21296969]
  62. Science. 2012 Mar 2;335(6072):1103-6 [PMID: 22383849]
  63. Comp Biochem Physiol A Mol Integr Physiol. 2001 Oct;130(3):437-60 [PMID: 11913457]
  64. Appl Environ Microbiol. 2005 Oct;71(10):5771-8 [PMID: 16204487]
  65. Mol Microbiol. 1997 Jul;25(1):175-87 [PMID: 11902719]
  66. Microbiology (Reading). 2011 Apr;157(Pt 4):977-987 [PMID: 21233158]
  67. J Bacteriol. 2000 May;182(9):2530-5 [PMID: 10762255]
  68. J Bacteriol. 2003 Nov;185(21):6358-70 [PMID: 14563871]
  69. J Bacteriol. 1994 Sep;176(17):5210-7 [PMID: 8071195]
  70. PLoS Biol. 2011 Feb 08;9(2):e1000589 [PMID: 21346797]

MeSH Term

Bacillus subtilis
Gene Knockout Techniques
Osmotic Pressure
Peptide Hydrolases
Peptides
Proline
Protein Transport
Proteolysis
Stress, Physiological

Chemicals

Peptides
Proline
Peptide Hydrolases

Word Cloud

Created with Highcharts 10.0.0subtilispeptidesprolinecanBproline-containingvariousPapAPapBpeptidasesBacillusosmoticallycompatibleexploitlengthscompositionsOsmoprotectiontypesimporthydrolysisosmoprotectionattaincellularprotectiondetrimentaleffectshighosmolarityinduceddenovosynthesisuptakesolutel-prolinenowfoundalsoexogenouslyprovidedosmoprotectantsgenerallydependentviapeptidetransportsystemsDppOppAppDtpToperatingreliesliberateeffectivenessconfervariesconsiderablycorrelatedamountliberatedsubsequentlyaccumulatedfreestressedcellgenedisruptionexperimentsgrowthstudiesquantificationintracellularpoolidentifiedYqhTYkvYresponsibleXaa-ProdipeptidesXaa-Pro-XaatripeptidespossessoverlappingsubstratespecificitiescontrastresiduepositionedNterminusaffecteddefectsTakentogetherdataprovidenewinsightphysiologyosmoticstressresponseillustrateflexibilityubiquitouslydistributedmicroorganismeffectivelyenvironmentalresourcesacclimatizationsustainedhigh-osmolaritysurroundingsaccumulationsolutesproteolysis

Similar Articles

Cited By