Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function.

Alessandro Coppe, Cecilia Agostini, Ilaria A M Marino, Lorenzo Zane, Luca Bargelloni, Stefania Bortoluzzi, Tomaso Patarnello
Author Information
  1. Alessandro Coppe: Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro (Padova), Italy.

Abstract

Antarctic notothenioids radiated over millions of years in subzero waters, evolving peculiar features, such as antifreeze glycoproteins and absence of heat shock response. Icefish, family Channichthyidae, also lack oxygen-binding proteins and display extreme modifications, including high mitochondrial densities in aerobic tissues. A genomic expansion accompanying the evolution of these fish was reported, but paucity of genomic information limits the understanding of notothenioid cold adaptation. We reconstructed and annotated the first skeletal muscle transcriptome of the icefish Chionodraco hamatus providing a new resource for icefish genomics (http://compgen.bio.unipd.it/chamatusbase/, last accessed December 12, 2012). We exploited deep sequencing of this energy-dependent tissue to test the hypothesis of selective duplication of genes involved in mitochondrial function. We developed a bioinformatic approach to univocally assign C. hamatus transcripts to orthology groups extracted from phylogenetic trees of five model species. Chionodraco hamatus duplicates were recorded for each orthology group allowing the identification of duplicated genes specific to the icefish lineage. Significantly more duplicates were found in the icefish when transcriptome data were compared with whole-genome data of model species. Indeed, duplicated genes were significantly enriched in proteins with mitochondrial localization, involved in mitochondrial function and biogenesis. In cold conditions and without oxygen-carrying proteins, energy production is challenging. The combination of high mitochondrial densities and the maintenance of duplicated genes involved in mitochondrial biogenesis and aerobic respiration might confer a selective advantage by improving oxygen diffusion and energy supply to aerobic tissues. Our results provide new insights into the genomic basis of icefish cold adaptation.

References

  1. Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9 [PMID: 15649413]
  2. Arch Biochem Biophys. 2008 May 1;473(1):76-87 [PMID: 18319055]
  3. Mol Biol Cell. 2004 Dec;15(12):5492-502 [PMID: 15483057]
  4. FEBS J. 2007 Nov;274(21):5481-504 [PMID: 17941859]
  5. Cell Metab. 2007 Aug;6(2):115-28 [PMID: 17681147]
  6. Nat Rev Mol Cell Biol. 2010 Sep;11(9):655-67 [PMID: 20729931]
  7. Plant Mol Biol. 2008 Sep;68(1-2):131-43 [PMID: 18523728]
  8. J Exp Biol. 1998 Jan;201 (Pt 1):1-12 [PMID: 9390931]
  9. Mol Phylogenet Evol. 2012 Mar;62(3):986-1008 [PMID: 22178363]
  10. Brookhaven Symp Biol. 1972;23:366-70 [PMID: 5065367]
  11. Cell. 2008 Jul 11;134(1):112-23 [PMID: 18614015]
  12. BMC Evol Biol. 2011 Jan 14;11:14 [PMID: 21232159]
  13. J Biol Chem. 2002 Feb 22;277(8):6097-103 [PMID: 11744738]
  14. EMBO J. 2002 Dec 2;21(23):6377-86 [PMID: 12456645]
  15. J Biol Chem. 1997 Sep 5;272(36):22934-9 [PMID: 9278457]
  16. J Cell Sci. 2009 Jul 1;122(Pt 13):2252-62 [PMID: 19535734]
  17. Am J Physiol Regul Integr Comp Physiol. 2010 Jul;299(1):R352-64 [PMID: 20427717]
  18. Free Radic Biol Med. 2008 Jul 15;45(2):167-76 [PMID: 18454945]
  19. J Immunol. 2009 Jan 1;182(1):466-76 [PMID: 19109178]
  20. J Biol Chem. 2007 Apr 6;282(14):10233-42 [PMID: 17237235]
  21. J Biol Chem. 1999 May 14;274(20):14429-33 [PMID: 10318868]
  22. PLoS One. 2012;7(2):e31860 [PMID: 22363756]
  23. J Biol Chem. 2011 Jun 3;286(22):19191-203 [PMID: 21478150]
  24. J Biol Chem. 2010 Nov 5;285(45):34991-8 [PMID: 20739282]
  25. Methods Mol Biol. 2012;855:259-79 [PMID: 22407712]
  26. Genes Dev. 1998 Jul 1;12(13):1962-74 [PMID: 9649501]
  27. Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73 [PMID: 15917333]
  28. Genome Res. 2009 Feb;19(2):327-35 [PMID: 19029536]
  29. Integr Comp Biol. 2010 Dec;50(6):1009-17 [PMID: 21082069]
  30. Circ Res. 2002 Aug 9;91(3):226-31 [PMID: 12169648]
  31. FASEB J. 2008 Feb;22(2):343-54 [PMID: 17901115]
  32. PLoS Biol. 2005 Oct;3(10):e314 [PMID: 16128622]
  33. Integr Comp Biol. 2010 Dec;50(6):993-1008 [PMID: 21558255]
  34. J Exp Biol. 2011 Jan 15;214(Pt 2):275-85 [PMID: 21177947]
  35. Mol Biol Evol. 2006 Nov;23(11):2008-16 [PMID: 16870682]
  36. PLoS One. 2011 Apr 18;6(4):e18911 [PMID: 21533117]
  37. PLoS One. 2009 Sep 17;4(9):e7026 [PMID: 19759899]
  38. Curr Biol. 2002 May 14;12(10):R366-71 [PMID: 12015140]
  39. J Cardiovasc Transl Res. 2010 Aug;3(4):374-83 [PMID: 20559783]
  40. Pediatr Cardiol. 2011 Mar;32(3):267-74 [PMID: 21210091]
  41. Genetics. 1999 Apr;151(4):1531-45 [PMID: 10101175]
  42. J Exp Biol. 2006 Jul;209(Pt 13):2462-71 [PMID: 16788029]
  43. Carcinogenesis. 2010 May;31(5):804-11 [PMID: 20106899]
  44. Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2025-31 [PMID: 18790835]
  45. Mol Biol Evol. 2003 Nov;20(11):1897-908 [PMID: 12885956]
  46. Bioessays. 2005 Sep;27(9):937-45 [PMID: 16108068]
  47. J Exp Biol. 2000 Apr;203(Pt 8):1277-86 [PMID: 10729277]
  48. Mol Biol Evol. 1999 Jul;16(7):885-97 [PMID: 10406107]
  49. Genome Res. 2009 May;19(5):859-67 [PMID: 19411603]
  50. BMC Genomics. 2008 May 15;9:222 [PMID: 18482437]
  51. J Exp Biol. 1998 Apr;201(Pt 8):1119-28 [PMID: 9510524]
  52. Comp Biochem Physiol Part D Genomics Proteomics. 2007 Dec;2(4):303-15 [PMID: 20483302]
  53. Mol Biol Evol. 2008 Jun;25(6):1099-112 [PMID: 18310660]
  54. Philos Trans R Soc Lond B Biol Sci. 2007 Dec 29;362(1488):2215-32 [PMID: 17553777]
  55. J Biol Chem. 2010 Jan 15;285(3):1577-81 [PMID: 19926786]
  56. Nucleic Acids Res. 2007;35(14):4686-703 [PMID: 17604309]
  57. J Biol Chem. 1999 Jan 8;274(2):781-6 [PMID: 9873016]
  58. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3434-9 [PMID: 22331888]
  59. Cell. 2007 Jul 27;130(2):273-85 [PMID: 17662942]
  60. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3420-4 [PMID: 9096409]
  61. Bioessays. 2010 Dec;32(12):1050-7 [PMID: 20967780]
  62. Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16970-5 [PMID: 15550548]
  63. J Exp Zool B Mol Dev Evol. 2010 Mar 15;314(2):135-47 [PMID: 19670462]
  64. Am J Hum Genet. 2011 Apr 8;88(4):488-93 [PMID: 21457908]
  65. J Exp Biol. 2004 Oct;207(Pt 21):3649-56 [PMID: 15371473]
  66. J Dermatol Sci. 2007 Jun;46(3):179-87 [PMID: 17412564]
  67. Prog Lipid Res. 2010 Jan;49(1):27-45 [PMID: 19686777]
  68. Biochem Biophys Res Commun. 2007 Aug 3;359(3):778-83 [PMID: 17560942]
  69. J Bioenerg Biomembr. 2009 Apr;41(2):137-43 [PMID: 19377834]
  70. J Cell Sci. 2010 Nov 15;123(Pt 22):3849-55 [PMID: 21048161]
  71. Gene. 2004 Jul 21;336(2):195-205 [PMID: 15246531]
  72. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11476-81 [PMID: 9736762]
  73. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2250-5 [PMID: 9482871]
  74. Mol Biol Cell. 2007 Dec;18(12):5100-12 [PMID: 17928405]
  75. Mol Cell Biochem. 2011 Nov;357(1-2):275-82 [PMID: 21630090]
  76. Genome. 1989;31(1):304-10 [PMID: 2687099]
  77. J Bioenerg Biomembr. 2010 Feb;42(1):29-35 [PMID: 20069349]
  78. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12944-9 [PMID: 18753634]
  79. J Exp Biol. 2011 Nov 15;214(Pt 22):3732-41 [PMID: 22031737]
  80. J Biol Chem. 2005 Nov 18;280(46):38673-81 [PMID: 16169850]
  81. Nat Rev Genet. 2009 Oct;10(10):725-32 [PMID: 19652647]
  82. Biochim Biophys Acta. 2010 Jun;1803(6):767-75 [PMID: 19962410]
  83. Eur J Biochem. 2000 Oct;267(20):6102-9 [PMID: 11012661]
  84. J Biol Chem. 2006 Mar 17;281(11):7012-21 [PMID: 16415341]
  85. BMC Biol. 2009 Feb 05;7:7 [PMID: 19196451]
  86. Comp Biochem Physiol B Biochem Mol Biol. 2004 Nov;139(3):321-33 [PMID: 15544958]
  87. Nature. 1954 May 8;173(4410):848-50 [PMID: 13165664]
  88. Bioessays. 2011 Apr;33(4):260-8 [PMID: 21290397]
  89. J Biol Chem. 2004 Aug 20;279(34):35334-40 [PMID: 15199057]

MeSH Term

Adaptation, Physiological
Animals
Antarctic Regions
Cold Temperature
Computational Biology
Evolution, Molecular
Gene Duplication
Genome, Mitochondrial
Mitochondria, Muscle
Muscle, Skeletal
Oxygen Consumption
Perciformes
Selection, Genetic
Transcriptome

Word Cloud

Created with Highcharts 10.0.0mitochondrialicefishgenesproteinsaerobicgenomiccoldtranscriptomehamatusselectiveinvolvedfunctionduplicatedAntarctichighdensitiestissuesevolutionadaptationmuscleChionodraconeworthologymodelspeciesduplicatesdatabiogenesisenergynotothenioidsradiatedmillionsyearssubzerowatersevolvingpeculiarfeaturesantifreezeglycoproteinsabsenceheatshockresponseIcefishfamilyChannichthyidaealsolackoxygen-bindingdisplayextrememodificationsincludingexpansionaccompanyingfishreportedpaucityinformationlimitsunderstandingnotothenioidreconstructedannotatedfirstskeletalprovidingresourcegenomicshttp://compgenbiounipdit/chamatusbase/lastaccessedDecember122012exploiteddeepsequencingenergy-dependenttissuetesthypothesisduplicationdevelopedbioinformaticapproachunivocallyassignCtranscriptsgroupsextractedphylogenetictreesfiverecordedgroupallowingidentificationspecificlineageSignificantlyfoundcomparedwhole-genomeIndeedsignificantlyenrichedlocalizationconditionswithoutoxygen-carryingproductionchallengingcombinationmaintenancerespirationmightconferadvantageimprovingoxygendiffusionsupplyresultsprovideinsightsbasisGenomecold:revealsduplicationsincreasing

Similar Articles

Cited By