Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A.

Ronit Mazor, Aaron N Vassall, Jaime A Eberle, Richard Beers, John E Weldon, David J Venzon, Kwong Y Tsang, Itai Benhar, Ira Pastan
Author Information
  1. Ronit Mazor: Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Abstract

Recombinant immunotoxins (RITs) are chimeric proteins that are being developed for cancer treatment. We have produced RITs that contain PE38, a portion of the bacterial protein Pseudomonas exotoxin A. Because the toxin is bacterial, it often induces neutralizing antibodies, which limit the number of treatment cycles and the effectiveness of the therapy. Because T cells are essential for antibody responses to proteins, we adopted an assay to map the CD4(+) T-cell epitopes in PE38. We incubated peripheral blood mononuclear cells with an immunotoxin to stimulate T-cell expansion, followed by exposure to overlapping peptide fragments of PE38 and an IL-2 ELISpot assay to measure responses. Our observation of T-cell responses in 50 of 50 individuals correlates with the frequency of antibody formation in patients with normal immune systems. We found a single, highly immunodominant epitope in 46% (23/50) of the donors. The immunodominant epitope is DRB1-restricted and was observed in subjects with different HLA alleles, indicating promiscuity. We identified two amino acids that, when deleted or mutated to alanine, eliminated the immunodominant epitope, and we used this information to construct mutant RITs that are highly cytotoxic and do not stimulate T-cell responses in many donors.

References

  1. Biotechniques. 1990 May;8(5):528-35 [PMID: 2357375]
  2. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1320-4 [PMID: 3006045]
  3. Nat Rev Rheumatol. 2010 Oct;6(10):558-9 [PMID: 20882023]
  4. Cancer Res. 2011 Oct 15;71(20):6300-9 [PMID: 21998010]
  5. J Immunol. 2004 Jun 1;172(11):6658-65 [PMID: 15153481]
  6. J Theor Biol. 2004 Dec 21;231(4):535-48 [PMID: 15488530]
  7. Blood. 2009 Apr 16;113(16):3792-800 [PMID: 18988862]
  8. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):974-8 [PMID: 8577771]
  9. J Interferon Cytokine Res. 2004 Sep;24(9):560-72 [PMID: 15450132]
  10. J Immunol. 1998 Apr 1;160(7):3363-73 [PMID: 9531296]
  11. Dev Biol (Basel). 2005;122:171-94 [PMID: 16375261]
  12. J Immunol. 2007 Apr 1;178(7):4455-65 [PMID: 17372003]
  13. J Clin Oncol. 2012 May 20;30(15):1822-8 [PMID: 22355053]
  14. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1272-7 [PMID: 21209329]
  15. Bioinformatics. 2001 Dec;17(12):1236-7 [PMID: 11751237]
  16. J Immunother. 2010 Apr;33(3):297-304 [PMID: 20445350]
  17. Nature. 1987 Jun 25-Jul 1;327(6124):713-5 [PMID: 2439915]
  18. Clin Immunol. 2012 Mar;142(3):320-31 [PMID: 22222093]
  19. Mol Cell Proteomics. 2010 Mar;9(3):538-49 [PMID: 20031926]
  20. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11782-7 [PMID: 22753489]
  21. Clin Cancer Res. 2007 Sep 1;13(17):5144-9 [PMID: 17785569]
  22. J Immunol. 2006 Dec 15;177(12):8822-34 [PMID: 17142785]
  23. Protein Eng Des Sel. 2012 Jan;25(1):1-6 [PMID: 22101015]
  24. Adv Drug Deliv Rev. 2009 Sep 30;61(11):977-85 [PMID: 19679153]
  25. J Immunol. 2010 Jul 15;185(2):943-55 [PMID: 20554959]
  26. J Immunol. 2005 Mar 15;174(6):3187-96 [PMID: 15749848]
  27. Blood. 2017 Oct 5;130(14):1620-1627 [PMID: 28983018]
  28. Semin Immunol. 1993 Dec;5(6):413-20 [PMID: 8123796]
  29. Clin Cancer Res. 2009 Aug 15;15(16):5274-9 [PMID: 19671873]
  30. Int Immunol. 1996 Feb;8(2):177-82 [PMID: 8671602]
  31. Curr Opin Rheumatol. 2009 May;21(3):211-5 [PMID: 19399992]
  32. Trends Biotechnol. 2006 Jun;24(6):274-80 [PMID: 16631266]
  33. Mol Cancer Ther. 2005 Nov;4(11):1791-800 [PMID: 16276001]
  34. J Immunol. 1993 Aug 15;151(4):1852-8 [PMID: 7688387]
  35. Annu Rev Immunol. 1993;11:331-60 [PMID: 8476565]
  36. Nucleic Acids Res. 2011 Jan;39(Database issue):D913-9 [PMID: 21062830]
  37. Methods Mol Biol. 2004;248:503-18 [PMID: 14970517]
  38. Thromb Haemost. 2002 Apr;87(4):666-73 [PMID: 12008950]
  39. J Immunol. 2004 Nov 1;173(9):5372-80 [PMID: 15494483]
  40. J Immunol Methods. 2005 Oct 30;305(2):188-98 [PMID: 16157348]

Grants

  1. /Intramural NIH HHS

MeSH Term

ADP Ribose Transferases
Antibodies
Bacterial Toxins
CD4-Positive T-Lymphocytes
Enzyme-Linked Immunosorbent Assay
Epitopes
Epitopes, T-Lymphocyte
Exotoxins
Gene Deletion
Genetic Variation
Humans
Immune System
Interleukin-2
Leukocytes, Mononuclear
Molecular Conformation
Peptides
Protein Binding
Protein Conformation
Protein Engineering
Protein Structure, Tertiary
Virulence Factors
Pseudomonas aeruginosa Exotoxin A

Chemicals

Antibodies
Bacterial Toxins
Epitopes
Epitopes, T-Lymphocyte
Exotoxins
Interleukin-2
Peptides
Virulence Factors
ADP Ribose Transferases

Word Cloud

Created with Highcharts 10.0.0T-cellresponsesimmunodominantepitopeRITsPE38immunotoxinsproteinstreatmentbacterialPseudomonasexotoxincellsantibodyassaystimulate50highlydonorsRecombinantchimericdevelopedcancerproducedcontainportionproteintoxinofteninducesneutralizingantibodieslimitnumbercycleseffectivenesstherapyTessentialadoptedmapCD4+epitopesincubatedperipheralbloodmononuclearimmunotoxinexpansionfollowedexposureoverlappingpeptidefragmentsIL-2ELISpotmeasureobservationindividualscorrelatesfrequencyformationpatientsnormalimmunesystemsfoundsingle46%23/50DRB1-restrictedobservedsubjectsdifferentHLAallelesindicatingpromiscuityidentifiedtwoaminoacidsdeletedmutatedalanineeliminatedusedinformationconstructmutantcytotoxicmanyIdentificationeliminationrecombinantbasedA

Similar Articles

Cited By