Extinction learning deficit in a rodent model of attention-deficit hyperactivity disorder.

Ryan J Brackney, Timothy H C Cheung, Katrina Herbst, Jade C Hill, Federico Sanabria
Author Information
  1. Ryan J Brackney: Arizona State University, PO Box 871104, Tempe, AZ 85287-1104, USA. ryan.brackney@asu.edu

Abstract

BACKGROUND: Deficient operant extinction has been hypothesized to be constitutive of ADHD dysfunction. In order to elucidate the behavioral mechanisms underlying this deficit, the performance of an animal model of ADHD, the spontaneously hypertensive rat (SHR), was compared against the performance of a control strain, the Wistar-Kyoto rat (WKY) during extinction.
METHOD: Following extensive training of lever pressing under variable interval schedules of food reinforcement (reported previously), SHR and WKY rats were exposed to two sessions of extinction training. Extinction data was analyzed using the Dynamic Bi-Exponential Refractory Model (DBERM) of operant performance. DBERM assumes that operant responses are organized in bouts separated by pauses; during extinction, bouts may decline across multiple dimensions, including frequency and length. DBERM parameters were estimated using hierarchical Bayesian modeling.
RESULTS: SHR responded more than WKY during the first extinction session. DBERM parameter estimates revealed that, at the onset of extinction, SHR produced more response bouts than WKY. Over the course of extinction, response bouts progressively shortened for WKY but not for SHR.
CONCLUSIONS: Based on prior findings on the sensitivity of DBERM parameters to motivational and schedule manipulations, present data suggests that (1) more frequent response bouts in SHR are likely related to greater incentive motivation, and (2) the persistent length of bouts in SHR are likely related to a slower updating of the response-outcome association. Overall, these findings suggest specific motivational and learning deficits that may explain ADHD-related impairments in operant performance.

References

  1. Behav Brain Res. 2002 Mar 10;130(1-2):37-45 [PMID: 11864716]
  2. J Exp Anal Behav. 2002 May;77(3):211-31 [PMID: 12083677]
  3. Behav Processes. 2009 Jun;81(2):309-15 [PMID: 19429225]
  4. Behav Brain Res. 2005 Jul 1;162(1):22-31 [PMID: 15922064]
  5. J Exp Anal Behav. 2004 Mar;81(2):155-67 [PMID: 15239490]
  6. Behav Brain Sci. 2005 Jun;28(3):397-419; discussion 419-68 [PMID: 16209748]
  7. Cogn Sci. 2008 Dec;32(8):1248-84 [PMID: 21585453]
  8. Physiol Behav. 1996 Aug;60(2):341-5 [PMID: 8840889]
  9. Neuropharmacology. 2009 Dec;57(7-8):619-26 [PMID: 19698722]
  10. Behav Modif. 1998 Apr;22(2):143-66 [PMID: 9563288]
  11. Behav Processes. 2012 May;90(1):111-23 [PMID: 22425782]
  12. Exp Brain Res. 2010 Mar;201(2):167-76 [PMID: 19777220]
  13. Behav Processes. 2001 Nov 1;56(2):85-101 [PMID: 11672935]
  14. Physiol Behav. 1992 Jul;52(1):49-57 [PMID: 1529013]
  15. Behav Processes. 2012 May;90(1):1-8 [PMID: 22465468]
  16. J Neurosci Methods. 2007 May 15;162(1-2):42-8 [PMID: 17241669]
  17. Behav Processes. 2011 May;87(1):125-34 [PMID: 21172410]
  18. Behav Brain Funct. 2008 Feb 08;4:7 [PMID: 18261220]
  19. Behav Brain Res. 2005 Jul 1;162(1):32-46 [PMID: 15922065]
  20. J Exp Psychol. 1953 Oct;46(4):213-24 [PMID: 13109117]
  21. Psychophysiology. 1997 Jan;34(1):116-23 [PMID: 9009815]
  22. J Exp Anal Behav. 2006 May;85(3):329-47 [PMID: 16776055]
  23. Behav Brain Funct. 2012 Jan 26;8:5 [PMID: 22277367]
  24. Learn Mem. 2004 Sep-Oct;11(5):485-94 [PMID: 15466298]
  25. Psychon Bull Rev. 2005 Aug;12(4):573-604 [PMID: 16447374]
  26. Neuroreport. 2002 Dec 20;13(18):2453-7 [PMID: 12499848]
  27. Neurosci Biobehav Rev. 2010 Apr;34(5):744-54 [PMID: 19944715]
  28. J Child Psychol Psychiatry. 2008 Jul;49(7):691-704 [PMID: 18081766]
  29. J Exp Anal Behav. 2001 May;75(3):247-74 [PMID: 11453618]
  30. J Exp Anal Behav. 2011 Jul;96(1):17-38 [PMID: 21765544]
  31. J Exp Anal Behav. 2003 Sep;80(2):159-71 [PMID: 14674726]
  32. Behav Processes. 2005 May 31;69(2):257-78 [PMID: 15845312]
  33. J Exp Psychol Anim Behav Process. 2011 Jan;37(1):1-9 [PMID: 20718555]
  34. J Abnorm Child Psychol. 1994 Jun;22(3):281-302 [PMID: 8064034]
  35. Behav Brain Res. 2004 Mar 2;149(2):183-96 [PMID: 15129781]

Grants

  1. DA011064/NIDA NIH HHS
  2. DA032632/NIDA NIH HHS
  3. MH094562/NIMH NIH HHS

MeSH Term

Animals
Attention
Attention Deficit Disorder with Hyperactivity
Behavior, Animal
Conditioning, Operant
Disease Models, Animal
Extinction, Psychological
Male
Motivation
Rats
Rats, Inbred SHR
Rats, Inbred WKY
Reinforcement Schedule
Species Specificity

Word Cloud

Created with Highcharts 10.0.0extinctionSHRboutsWKYDBERMoperantperformanceresponseADHDdeficitmodelrattrainingExtinctiondatausingmaylengthparametersfindingsmotivationallikelyrelatedlearningBACKGROUND:DeficienthypothesizedconstitutivedysfunctionorderelucidatebehavioralmechanismsunderlyinganimalspontaneouslyhypertensivecomparedcontrolstrainWistar-KyotoMETHOD:FollowingextensiveleverpressingvariableintervalschedulesfoodreinforcementreportedpreviouslyratsexposedtwosessionsanalyzedDynamicBi-ExponentialRefractoryModelassumesresponsesorganizedseparatedpausesdeclineacrossmultipledimensionsincludingfrequencyestimatedhierarchicalBayesianmodelingRESULTS:respondedfirstsessionparameterestimatesrevealedonsetproducedcourseprogressivelyshortenedCONCLUSIONS:Basedpriorsensitivityschedulemanipulationspresentsuggests1frequentgreaterincentivemotivation2persistentslowerupdatingresponse-outcomeassociationOverallsuggestspecificdeficitsexplainADHD-relatedimpairmentsrodentattention-deficithyperactivitydisorder

Similar Articles

Cited By