Bayesian multiple imputation for missing multivariate longitudinal data from a Parkinson's disease clinical trial.

Sheng Luo, Andrew B Lawson, Bo He, Jordan J Elm, Barbara C Tilley
Author Information
  1. Sheng Luo: Division of Biostatistics, The University of Texas Health Science Center at Houston, Houston, TX, USA sheng.t.luo@uth.tmc.edu.
  2. Andrew B Lawson: Medical University of South Carolina, Charleston, SC, USA.
  3. Bo He: Division of Biostatistics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
  4. Jordan J Elm: Division of Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA.
  5. Barbara C Tilley: Division of Biostatistics, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Abstract

In Parkinson's disease (PD) clinical trials, Parkinson's disease is studied using multiple outcomes of various types (e.g. binary, ordinal, continuous) collected repeatedly over time. The overall treatment effects across all outcomes can be evaluated based on a global test statistic. However, missing data occur in outcomes for many reasons, e.g. dropout, death, etc., and need to be imputed in order to conduct an intent-to-treat analysis. We propose a Bayesian method based on item response theory to perform multiple imputation while accounting for multiple sources of correlation. Sensitivity analysis is performed under various scenarios. Our simulation results indicate that the proposed method outperforms standard methods such as last observation carried forward and separate random effects model for each outcome. Our method is motivated by and applied to a Parkinson's disease clinical trial. The proposed method can be broadly applied to longitudinal studies with multiple outcomes subject to missingness.

Keywords

References

  1. N Engl J Med. 2006 Nov 2;355(18):1851-62 [PMID: 17079759]
  2. Biometrics. 1996 Dec;52(4):1324-33 [PMID: 8962456]
  3. Neurology. 2006 Mar 14;66(5):664-71 [PMID: 16481597]
  4. Stroke. 1996 Nov;27(11):2136-42 [PMID: 8898828]
  5. Stat Methods Med Res. 2007 Oct;16(5):399-415 [PMID: 17656454]
  6. Ann Neurol. 1995 Jan;37(1):30-40 [PMID: 7818255]
  7. Stat Med. 1999 Nov 15;18(21):2917-31 [PMID: 10523750]
  8. Ann Neurol. 1998 Sep;44(3 Suppl 1):S160-6 [PMID: 9749589]
  9. Spine (Phila Pa 1976). 1999 Sep 15;24(18):1937-42 [PMID: 10515020]
  10. Neurology. 2007 Jan 2;68(1):20-8 [PMID: 17200487]
  11. Stat Med. 2008 Jul 20;27(16):3084-104 [PMID: 18189338]
  12. Biometrics. 1991 Jun;47(2):511-21 [PMID: 1912258]
  13. Biometrics. 1984 Dec;40(4):1079-87 [PMID: 6534410]
  14. Lancet. 2004 May 29;363(9423):1783-93 [PMID: 15172778]
  15. J Am Stat Assoc. 2010 Jun 1;105(490):578-587 [PMID: 21625372]
  16. Ann Allergy Asthma Immunol. 1998 Jul;81(1):65-72 [PMID: 9690575]
  17. Biometrics. 1993 Mar;49(1):23-30 [PMID: 8513104]
  18. Biometrics. 2005 Jun;61(2):532-9 [PMID: 16011701]
  19. Biometrics. 1987 Sep;43(3):487-98 [PMID: 3663814]
  20. Control Clin Trials. 1997 Dec;18(6):530-45; discussion 546-9 [PMID: 9408716]
  21. Test (Madr). 2009 May 1;18(1):1-43 [PMID: 21218187]
  22. Environ Health Perspect. 1994 Jan;102 Suppl 1:33-8 [PMID: 8187721]
  23. Stroke. 1988 May;19(5):604-7 [PMID: 3363593]
  24. JAMA. 1999 Sep 8;282(10):971-3 [PMID: 10485683]
  25. Qual Life Res. 1999 Jun;8(4):345-50 [PMID: 10472167]
  26. Neurology. 1999 Mar 23;52(5):944-50 [PMID: 10102410]
  27. J Am Acad Dermatol. 1998 Oct;39(4 Pt 1):578-89 [PMID: 9777765]
  28. Neurology. 2002 Jul 9;59(1):103-8 [PMID: 12105315]
  29. Biometrics. 1999 Dec;55(4):1188-92 [PMID: 11315066]
  30. Neurology. 2001 Jun 12;56(11):1505-13 [PMID: 11402107]
  31. N Engl J Med. 1999 Jun 10;340(23):1781-7 [PMID: 10362821]

Grants

  1. U01 NS043127/NINDS NIH HHS
  2. U01 NS043128/NINDS NIH HHS

MeSH Term

Bayes Theorem
Creatine
Humans
Longitudinal Studies
Parkinson Disease

Chemicals

Creatine

Word Cloud

Created with Highcharts 10.0.0multipleParkinson'sdiseaseoutcomesmethodclinicalmissingdatatrialvariousegeffectscanbasedglobaltestanalysisBayesiantheoryimputationproposedappliedlongitudinalPDtrialsstudiedusingtypesbinaryordinalcontinuouscollectedrepeatedlytimeoveralltreatmentacrossevaluatedstatisticHoweveroccurmanyreasonsdropoutdeathetcneedimputedorderconductintent-to-treatproposeitemresponseperformaccountingsourcescorrelationSensitivityperformedscenariossimulationresultsindicateoutperformsstandardmethodslastobservationcarriedforwardseparaterandommodeloutcomemotivatedbroadlystudiessubjectmissingnessmultivariateClinicalMarkovchainMonteCarlostatisticalitem-responselatentvariable

Similar Articles

Cited By (10)