A survey of GPU-based medical image computing techniques.

Lin Shi, Wen Liu, Heye Zhang, Yongming Xie, Defeng Wang
Author Information
  1. Lin Shi: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; ; CUHK Shenzhen Research Institute, Shenzhen, Guangdong Province, P.R. China; ; Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P.R. China.

Abstract

Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine.

Keywords

References

  1. Comput Methods Programs Biomed. 2011 Dec;104(3):e45-57 [PMID: 21112118]
  2. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 [PMID: 11293691]
  3. Med Image Anal. 2006 Jun;10(3):452-64 [PMID: 15979375]
  4. Phys Med Biol. 2007 Oct 7;52(19):5771-83 [PMID: 17881799]
  5. IEEE Trans Med Imaging. 2003 Mar;22(3):414-23 [PMID: 12760558]
  6. Med Phys. 2009 Sep;36(9):4095-102 [PMID: 19810482]
  7. IEEE Trans Image Process. 2000;9(7):1249-61 [PMID: 18262962]
  8. IEEE Trans Med Imaging. 1999 Nov;18(11):1049-75 [PMID: 10661324]
  9. IEEE Trans Med Imaging. 2003 Aug;22(8):986-1004 [PMID: 12906253]
  10. Med Phys. 2005 Dec;32(12):3737-49 [PMID: 16475773]
  11. Med Image Comput Comput Assist Interv. 2011;14(Pt 3):603-10 [PMID: 22003749]
  12. IEEE Trans Biomed Eng. 2010 May;57(5):1158-66 [PMID: 20142158]
  13. IEEE Trans Med Imaging. 1998 Aug;17(4):586-95 [PMID: 9845314]
  14. Med Image Anal. 1998 Mar;2(1):1-36 [PMID: 10638851]
  15. J Signal Process Syst. 2009 Apr 1;55(1-3):229-250 [PMID: 25328635]
  16. IEEE Trans Vis Comput Graph. 2011 Dec;17(12):1795-802 [PMID: 22034296]
  17. Comput Methods Programs Biomed. 2009 Jun;94(3):250-66 [PMID: 19249113]
  18. Med Phys. 2009 Oct;36(10):4555-68 [PMID: 19928087]
  19. Int J Comput Assist Radiol Surg. 2010 May;5(3):251-62 [PMID: 20033502]
  20. IEEE Trans Vis Comput Graph. 2005 Sep-Oct;11(5):562-72 [PMID: 16144253]
  21. Magn Reson Imaging. 2011 Jun;29(5):712-6 [PMID: 21531103]
  22. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4897-900 [PMID: 22255436]
  23. Med Image Anal. 2004 Sep;8(3):217-31 [PMID: 15450217]
  24. Int J Biomed Imaging. 2011;2011:952819 [PMID: 21977020]
  25. J Struct Biol. 2008 Oct;164(1):153-60 [PMID: 18692140]
  26. IEEE Trans Pattern Anal Mach Intell. 2005 Nov;27(11):1832-7 [PMID: 16285381]
  27. Radiology. 2008 Jan;246(1):157-67 [PMID: 18033755]
  28. Annu Rev Biomed Eng. 2000;2:315-37 [PMID: 11701515]
  29. Comput Methods Programs Biomed. 2010 Aug;99(2):133-46 [PMID: 20004493]
  30. IEEE Trans Med Imaging. 1997 Dec;16(6):878-86 [PMID: 9533587]
  31. Comput Med Imaging Graph. 2009 Sep;33(6):461-76 [PMID: 19467840]
  32. Med Phys. 2008 Aug;35(8):3546-53 [PMID: 18777915]
  33. IEEE Trans Vis Comput Graph. 2009 Nov-Dec;15(6):1505-14 [PMID: 19834227]
  34. IEEE Trans Med Imaging. 2010 Mar;29(3):583-97 [PMID: 20199906]
  35. Med Image Anal. 2012 Apr;16(3):642-61 [PMID: 20452269]
  36. Neuroimage. 2010 Dec;53(4):1181-96 [PMID: 20637289]
  37. Med Phys. 2011 May;38(5):2685-97 [PMID: 21776805]
  38. Phys Med Biol. 2011 Jul 7;56(13):3787-807 [PMID: 21628778]
  39. IEEE Trans Vis Comput Graph. 2004 Jul-Aug;10(4):422-33 [PMID: 18579970]
  40. J Digit Imaging. 2011 Aug;24(4):640-64 [PMID: 20714917]
  41. Med Image Anal. 2006 Feb;10(1):96-112 [PMID: 16150629]
  42. IEEE Trans Med Imaging. 2006 Aug;25(8):987-1010 [PMID: 16894993]

Word Cloud

Created with Highcharts 10.0.0medicalimageapplicationsprocessingcomputingimagingGPUsurveyGPU-basedclinicalcomputationallydemandinggraphicsunitsegmentationregistrationvisualizationMedicalcurrentlyplayscrucialrolethroughoutentirescientificresearchdiagnosticstreatmentplanningHoweverproceduresoftenduelargethree-dimensional3Ddatasetsprocesspracticalrapidlyenhancingperformancesprocessorsimprovedprogrammingsupportexcellentprice-to-performanceratioemergedcompetitiveparallelplatformexpensivetaskswiderangemajorpurposeprovidecomprehensivereferencesourcestartersresearchersinvolvedWithincontinuousadvancementreviewedexistingtraditionalthreeareasnamelysurveyedpotentialadvantagesassociatedchallengescurrentalsodiscussedinspirefuturemedicinetechniquesGraphicshigh-performance

Similar Articles

Cited By