Memristive devices for computing.

J Joshua Yang, Dmitri B Strukov, Duncan R Stewart
Author Information
  1. J Joshua Yang: Hewlett-Packard Laboratories, Palo Alto, California 94304, USA. jianhuay@hp.com

Abstract

Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met.

References

  1. Nat Mater. 2007 Nov;6(11):824-32 [PMID: 17972937]
  2. Nanotechnology. 2011 Jun 24;22(25):254015 [PMID: 21572186]
  3. Nat Mater. 2011 Jun 26;10(8):591-5 [PMID: 21706012]
  4. Phys Rev Lett. 2007 Apr 6;98(14):146403 [PMID: 17501295]
  5. Nanotechnology. 2011 Jun 24;22(25):254007 [PMID: 21572203]
  6. Nat Mater. 2011 Jul 10;10(8):625-30 [PMID: 21743450]
  7. Nat Mater. 2012 May 22;11(6):478-81 [PMID: 22614504]
  8. Rep Prog Phys. 2012 Jul;75(7):076502 [PMID: 22790779]
  9. Adv Mater. 2011 Sep 15;23(35):4063-7 [PMID: 21809400]
  10. Adv Mater. 2010 Nov 16;22(43):4819-22 [PMID: 20803540]
  11. Nanotechnology. 2011 Dec 2;22(48):485203 [PMID: 22071289]
  12. Adv Mater. 2011 Dec 15;23(47):5633-40 [PMID: 22065427]
  13. Nanotechnology. 2011 Dec 16;22(50):505402 [PMID: 22108243]
  14. Adv Mater. 2011 Apr 19;23(15):1730-3 [PMID: 21491505]
  15. Nano Lett. 2008 Oct;8(10):3345-9 [PMID: 18729415]
  16. Adv Mater. 2010 Aug 24;22(32):3573-7 [PMID: 20512814]
  17. Nano Lett. 2009 Jan;9(1):496-500 [PMID: 19113891]
  18. Nat Mater. 2007 Nov;6(11):833-40 [PMID: 17972938]
  19. Adv Mater. 2012 Jan 10;24(2):252-67 [PMID: 21989741]
  20. Adv Mater. 2012 Apr 10;24(14):1844-9 [PMID: 22407902]
  21. Nanotechnology. 2011 Nov 25;22(47):475702 [PMID: 22056387]
  22. Nat Mater. 2006 Apr;5(4):312-20 [PMID: 16565712]
  23. Nanotechnology. 2011 Jun 24;22(25):254027 [PMID: 21572197]
  24. Nanotechnology. 2011 Jun 24;22(25):254003 [PMID: 21572191]
  25. Nat Nanotechnol. 2011 Apr;6(4):237-41 [PMID: 21358647]
  26. Nano Lett. 2009 Oct;9(10):3640-5 [PMID: 19722537]
  27. Nano Lett. 2010 Apr 14;10(4):1297-301 [PMID: 20192230]
  28. Nano Lett. 2012 Jan 11;12(1):389-95 [PMID: 22141918]
  29. Adv Mater. 2011 Mar 11;23(10):1277-81 [PMID: 21381130]
  30. Nano Lett. 2011 May 11;11(5):2114-8 [PMID: 21476563]
  31. Phys Rev Lett. 2007 Mar 16;98(11):116601 [PMID: 17501071]
  32. Nat Mater. 2004 Dec;3(12):862-7 [PMID: 15516928]
  33. Nat Mater. 2010 May;9(5):403-6 [PMID: 20400954]
  34. Phys Rev Lett. 2009 Jan 16;102(2):026801 [PMID: 19257301]
  35. Small. 2011 Oct 17;7(20):2899-905 [PMID: 21874659]
  36. Nanotechnology. 2012 Feb 24;23(7):075201 [PMID: 22260949]
  37. Nano Lett. 2012 May 9;12(5):2179-86 [PMID: 21668029]
  38. Adv Mater. 2009 Nov 20;21(43):4303-22 [PMID: 26042937]
  39. Nat Nanotechnol. 2011 Dec 04;7(2):101-4 [PMID: 22138863]
  40. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20155-8 [PMID: 19918072]
  41. Chem Rev. 2010 Jan;110(1):240-67 [PMID: 19715293]
  42. Science. 2011 Apr 29;332(6029):568-70 [PMID: 21393510]
  43. Nanotechnology. 2011 Jun 24;22(25):254002 [PMID: 21572206]
  44. Sci Rep. 2012;2:242 [PMID: 22355755]
  45. Nanotechnology. 2010 Oct 22;21(42):425205 [PMID: 20864781]
  46. Nature. 2010 Apr 8;464(7290):873-6 [PMID: 20376145]
  47. Nanotechnology. 2012 May 11;23(18):185202 [PMID: 22516621]
  48. J Am Chem Soc. 2011 Feb 2;133(4):941-8 [PMID: 21175171]
  49. Nature. 2005 Jan 6;433(7021):47-50 [PMID: 15635405]
  50. Nat Commun. 2012 Mar 13;3:732 [PMID: 22415823]
  51. Adv Mater. 2010 Dec 1;22(45):5193-7 [PMID: 20957700]
  52. Nanotechnology. 2009 May 27;20(21):215201 [PMID: 19423925]
  53. Nat Mater. 2012 Apr 29;11(6):530-5 [PMID: 22543299]
  54. Nature. 2008 May 1;453(7191):80-3 [PMID: 18451858]
  55. Adv Mater. 2010 Sep 22;22(36):4034-8 [PMID: 20677188]
  56. Nanotechnology. 2011 Jun 24;22(25):254001 [PMID: 21572202]
  57. Nanotechnology. 2011 Jun 24;22(25):254029 [PMID: 21572196]
  58. J Nanosci Nanotechnol. 2007 Jan;7(1):151-67 [PMID: 17455481]
  59. Nat Nanotechnol. 2008 Jul;3(7):429-33 [PMID: 18654568]
  60. Nanotechnology. 2010 Mar 26;21(12):125204 [PMID: 20203360]
  61. Ann N Y Acad Sci. 2003 Dec;1006:146-63 [PMID: 14976016]

Word Cloud

Created with Highcharts 10.0.0devicesresistancecanmemristiveMemristiveswitchesbasedperformancerecentprogresscomputingelectricalretainstateinternalhistoryappliedvoltagecurrentstoreprocessinformationofferseveralkeycharacteristicsexceedconventionalintegratedcircuittechnologyimportantclasstwo-terminalionicmotionbuiltsimpleconductor/insulator/conductorthin-filmstackoriginallyconceivedlate1960sledfastlow-energyhigh-endurancescaledless10nmstackedthreedimensionsHoweverunderlyingdevicemechanismsremainunclearsignificantbarrierwidespreadapplicationreviewdevelopmentunderstandingalsoexaminerequirementsdetailoutstandingchallengesmet

Similar Articles

Cited By