The influence of resection height on proximal femoral strain patterns after Metha short stem hip arthroplasty: an experimental study on composite femora.

Thilo Floerkemeier, Jens Gronewold, Sebastian Berner, Gavin Olender, Christof Hurschler, Henning Windhagen, Gabriela von Lewinski
Author Information
  1. Thilo Floerkemeier: Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Str. 1-7, 30625, Hannover, Germany. Thilo.floerkemeier@annastift.de

Abstract

PURPOSE: The number of candidates for a total hip arthroplasty (THA) is steadily increasing, while the average patient age is decreasing for primary THA. The rise in THA is mainly due to excellent clinical outcomes and the extended longevity of modern implants. Short stem arthroplasties with predominantly metaphyseal fixation such as the Metha® stem are suggested for young patients. It is hypothesised that the more physiological load transfer of these devices reduces stress shielding, which in turn may reduce the risk of aseptic loosening. However, patients with femoral deformities often require a deviation of the resection height. To this end, our aim was to evaluate how resection height influences strain patterns in order to characterise possible limits for short stem implantation.
METHODS: Biomechanical testing using ten strain gauges on synthetic bone illustrated the strain patterns of three different resection heights (0, +5 and +10 mm) for the Metha stem.
RESULTS: The greatest differences in strains were displayed at the "high" (most proximal) resection height (+10 mm) when compared to the non-implanted strain pattern. At the medial calcar, the strain was 143% for +10 mm, 96% for +5 mm and 94% for 0 mm. Overall, discrepancies were less for deeper resections.
CONCLUSIONS: The deeper the resection, the more similar the strain patterns are when compared to a non-implanted synthetic bone. Changes in strain patterns are induced by variation in the varus/valgus positioning of the implant and by different offsets.

References

  1. J Biomech. 2001 Jun;34(6):773-81 [PMID: 11470115]
  2. Orthopedics. 2007 Oct;30(10 Suppl):S148-52 [PMID: 17983119]
  3. Hip Int. 2012 Jul-Aug;22(4):344-54 [PMID: 22878970]
  4. Orthopade. 2007 Apr;36(4):353-9 [PMID: 17377765]
  5. J Bone Joint Surg Br. 2001 Aug;83(6):921-9 [PMID: 11521940]
  6. Clin Orthop Relat Res. 1979 Jun;(141):17-27 [PMID: 477100]
  7. J Bone Joint Surg Br. 2000 Sep;82(7):952-8 [PMID: 11041581]
  8. Int Orthop. 2012 Mar;36(3):533-8 [PMID: 21935621]
  9. Arch Orthop Trauma Surg. 2012 Aug;132(8):1125-31 [PMID: 22546932]
  10. Acta Orthop. 2009 Jun;80(3):291-7 [PMID: 19562565]
  11. Am J Sports Med. 2012 Feb;40(2):425-32 [PMID: 21993977]
  12. Proc Inst Mech Eng H. 2009 Jan;223(1):27-44 [PMID: 19239065]
  13. J Arthroplasty. 2007 Aug;22(5):703-10 [PMID: 17689780]
  14. Clin Biomech (Bristol, Avon). 2009 Jun;24(5):429-34 [PMID: 19307048]
  15. Proc Inst Mech Eng H. 2009 Apr;223(3):273-88 [PMID: 19405434]
  16. Clin Biomech (Bristol, Avon). 2006 Oct;21(8):834-40 [PMID: 16806616]
  17. Orthopedics. 2009 Oct;32(10 Suppl):18-21 [PMID: 19835302]
  18. Int J Immunopathol Pharmacol. 2011 Jan-Mar;24(1 Suppl 2):113-6 [PMID: 21669148]
  19. Clin Biomech (Bristol, Avon). 2006 Jun;21(5):495-501 [PMID: 16457913]
  20. Hip Int. 2011 Sep-Oct;21(5):583-6 [PMID: 21948037]
  21. Z Orthop Ihre Grenzgeb. 2006 Jul-Aug;144(4):386-93 [PMID: 16941296]
  22. J Bone Joint Surg Br. 2001 Mar;83(2):295-301 [PMID: 11284584]
  23. J Bone Joint Surg Br. 2009 May;91(5):676-82 [PMID: 19407307]

MeSH Term

Arthroplasty, Replacement, Hip
Biomechanical Phenomena
Femur
Hip Prosthesis
Humans
Stress, Mechanical

Word Cloud

Created with Highcharts 10.0.0strainresectionstempatternsmmheightTHA+10hippatientsfemoralshortsyntheticbonedifferent0+5Methaproximalcomparednon-implanteddeeperPURPOSE:numbercandidatestotalarthroplastysteadilyincreasingaveragepatientagedecreasingprimaryrisemainlydueexcellentclinicaloutcomesextendedlongevitymodernimplantsShortarthroplastiespredominantlymetaphysealfixationMetha®suggestedyounghypothesisedphysiologicalloadtransferdevicesreducesstressshieldingturnmayreduceriskasepticlooseningHoweverdeformitiesoftenrequiredeviationendaimevaluateinfluencesordercharacterisepossiblelimitsimplantationMETHODS:BiomechanicaltestingusingtengaugesillustratedthreeheightsRESULTS:greatestdifferencesstrainsdisplayed"high"patternmedialcalcar143%96%94%OveralldiscrepancieslessresectionsCONCLUSIONS:similarChangesinducedvariationvarus/valguspositioningimplantoffsetsinfluencearthroplasty:experimentalstudycompositefemora

Similar Articles

Cited By