Harmful cyanobacterial blooms: causes, consequences, and controls.

Hans W Paerl, Timothy G Otten
Author Information
  1. Hans W Paerl: Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, 28557, Morehead City, NC, USA. hpaerl@email.unc.edu

Abstract

Cyanobacteria are the Earth's oldest oxygenic photoautotrophs and have had major impacts on shaping its biosphere. Their long evolutionary history (≈ 3.5 by) has enabled them to adapt to geochemical and climatic changes, and more recently anthropogenic modifications of aquatic environments, including nutrient over-enrichment (eutrophication), water diversions, withdrawals, and salinization. Many cyanobacterial genera exhibit optimal growth rates and bloom potentials at relatively high water temperatures; hence global warming plays a key role in their expansion and persistence. Bloom-forming cyanobacterial taxa can be harmful from environmental, organismal, and human health perspectives by outcompeting beneficial phytoplankton, depleting oxygen upon bloom senescence, and producing a variety of toxic secondary metabolites (e.g., cyanotoxins). How environmental factors impact cyanotoxin production is the subject of ongoing research, but nutrient (N, P and trace metals) supply rates, light, temperature, oxidative stressors, interactions with other biota (bacteria, viruses and animal grazers), and most likely, the combined effects of these factors are all involved. Accordingly, strategies aimed at controlling and mitigating harmful blooms have focused on manipulating these dynamic factors. The applicability and feasibility of various controls and management approaches is discussed for natural waters and drinking water supplies. Strategies based on physical, chemical, and biological manipulations of specific factors show promise; however, a key underlying approach that should be considered in almost all instances is nutrient (both N and P) input reductions; which have been shown to effectively reduce cyanobacterial biomass, and therefore limit health risks and frequencies of hypoxic events.

References

  1. Environ Microbiol. 2008 Oct;10(10):2476-83 [PMID: 18647335]
  2. BMC Evol Biol. 2008 Sep 22;8:256 [PMID: 18808704]
  3. Ambio. 2002 Mar;31(2):64-71 [PMID: 12078011]
  4. Environ Sci Technol. 2011 Dec 15;45(24):10300-5 [PMID: 22070635]
  5. Nature. 1999 Jun 10;399(6736):541-8 [PMID: 10376593]
  6. PLoS Biol. 2006 Jul;4(8):e234 [PMID: 16802857]
  7. Science. 1983 Aug 12;221(4611):669-71 [PMID: 17787737]
  8. Environ Microbiol Rep. 2009 Feb;1(1):27-37 [PMID: 23765717]
  9. Arch Environ Contam Toxicol. 2004 May;46(4):463-9 [PMID: 15253043]
  10. Environ Sci Technol. 2010 Oct 15;44(20):7756-8 [PMID: 20804137]
  11. Environ Manage. 2010 Jan;45(1):105-12 [PMID: 19915899]
  12. Appl Environ Microbiol. 2009 Apr;75(7):2017-26 [PMID: 19201978]
  13. Microb Ecol. 2013 Jan;65(1):12-21 [PMID: 22915156]
  14. Environ Int. 2007 Apr;33(3):309-14 [PMID: 17169427]
  15. PLoS One. 2011;6(9):e25569 [PMID: 21980492]
  16. PLoS One. 2010 Sep 10;5(9): [PMID: 20844747]
  17. PLoS One. 2011 Mar 18;6(3):e17615 [PMID: 21445264]
  18. Microbiol Mol Biol Rev. 2000 Mar;64(1):69-114 [PMID: 10704475]
  19. Microb Ecol. 1994 Sep;28(2):237-43 [PMID: 24186450]
  20. Appl Environ Microbiol. 2006 Jul;72(7):4957-63 [PMID: 16820493]
  21. Chem Biol. 2004 Jun;11(6):817-33 [PMID: 15217615]
  22. Ambio. 2001 Dec;30(8):565-71 [PMID: 11878032]
  23. Environ Sci Technol. 2012 Mar 20;46(6):3480-8 [PMID: 22324444]
  24. Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11254-8 [PMID: 18667696]
  25. Appl Environ Microbiol. 2010 Jul;76(13):4362-8 [PMID: 20453121]
  26. Sci Total Environ. 2011 Apr 15;409(10):1739-45 [PMID: 21345482]
  27. Appl Environ Microbiol. 2011 Oct;77(20):7271-8 [PMID: 21873484]
  28. Ann Rev Mar Sci. 2012;4:425-48 [PMID: 22457982]
  29. Appl Environ Microbiol. 1995 Oct;61(10):3734-40 [PMID: 16535153]
  30. Ambio. 2002 Mar;31(2):102-12 [PMID: 12077998]
  31. Microb Ecol. 2001 Feb;41(2):97-105 [PMID: 12032614]
  32. Adv Exp Med Biol. 2008;619:239-57 [PMID: 18461772]
  33. Oecologia. 1988 Aug;76(3):383-389 [PMID: 28312018]
  34. J Bacteriol. 2008 Mar;190(5):1762-72 [PMID: 18065537]
  35. Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5074-8 [PMID: 15809446]
  36. Ecol Lett. 2007 Dec;10(12):1135-42 [PMID: 17922835]
  37. Water Res. 2012 Apr 1;46(5):1349-63 [PMID: 21893330]
  38. Environ Toxicol. 2005 Jun;20(3):257-62 [PMID: 15892070]
  39. Appl Environ Microbiol. 2005 Feb;71(2):629-35 [PMID: 15691911]
  40. Science. 2009 Feb 20;323(5917):1014-5 [PMID: 19229022]
  41. Oecologia. 2007 Jun;152(3):473-84 [PMID: 17375336]
  42. Appl Environ Microbiol. 2000 Aug;66(8):3387-92 [PMID: 10919796]
  43. Nat Rev Microbiol. 2004 Aug;2(8):643-55 [PMID: 15263899]
  44. Microb Ecol. 2002 May;43(4):432-442 [PMID: 12043002]
  45. ScientificWorldJournal. 2001 Oct 26;1 Suppl 2:371-7 [PMID: 12805876]
  46. Ambio. 2002 Mar;31(2):60-3 [PMID: 12078010]
  47. ScientificWorldJournal. 2001 Apr 04;1:76-113 [PMID: 12805693]
  48. Nature. 2003 Aug 14;424(6950):741 [PMID: 12917674]
  49. Appl Environ Microbiol. 1985 May;49(5):1046-52 [PMID: 16346779]
  50. FEMS Microbiol Lett. 2007 Jan;266(1):49-53 [PMID: 17092296]
  51. Science. 2008 Apr 4;320(5872):57-8 [PMID: 18388279]
  52. Water Res. 2011 Feb;45(5):1973-83 [PMID: 20934736]
  53. J Mol Microbiol Biotechnol. 1999 Aug;1(1):45-50 [PMID: 10941783]
  54. Environ Microbiol. 2011 Apr;13(4):1064-77 [PMID: 21251177]
  55. Science. 1976 Jun 25;192(4246):1332-4 [PMID: 17739838]
  56. Appl Environ Microbiol. 2003 Nov;69(11):6723-30 [PMID: 14602633]
  57. Appl Environ Microbiol. 2001 Jun;67(6):2810-8 [PMID: 11375198]
  58. J Bacteriol. 2005 May;187(9):3188-200 [PMID: 15838046]
  59. Trends Microbiol. 2005 Jun;13(6):278-84 [PMID: 15936660]

MeSH Term

Biomass
Climate Change
Cyanobacteria
Ecosystem
Environmental Monitoring
Eutrophication
Water Microbiology
Water Pollution

Word Cloud

Created with Highcharts 10.0.0cyanobacterialfactorsnutrientwaterratesbloomkeyharmfulenvironmentalhealthNPcontrolsCyanobacteriaEarth'soldestoxygenicphotoautotrophsmajorimpactsshapingbiospherelongevolutionaryhistory35enabledadaptgeochemicalclimaticchangesrecentlyanthropogenicmodificationsaquaticenvironmentsincludingover-enrichmenteutrophicationdiversionswithdrawalssalinizationManygeneraexhibitoptimalgrowthpotentialsrelativelyhightemperatureshenceglobalwarmingplaysroleexpansionpersistenceBloom-formingtaxacanorganismalhumanperspectivesoutcompetingbeneficialphytoplanktondepletingoxygenuponsenescenceproducingvarietytoxicsecondarymetabolitesegcyanotoxinsimpactcyanotoxinproductionsubjectongoingresearchtracemetalssupplylighttemperatureoxidativestressorsinteractionsbiotabacteriavirusesanimalgrazerslikelycombinedeffectsinvolvedAccordinglystrategiesaimedcontrollingmitigatingbloomsfocusedmanipulatingdynamicapplicabilityfeasibilityvariousmanagementapproachesdiscussednaturalwatersdrinkingsuppliesStrategiesbasedphysicalchemicalbiologicalmanipulationsspecificshowpromisehoweverunderlyingapproachconsideredalmostinstancesinputreductionsshowneffectivelyreducebiomassthereforelimitrisksfrequencieshypoxiceventsHarmfulblooms:causesconsequences

Similar Articles

Cited By