Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy.

Jing Peng, Ahmed Omran, Muhammad Usman Ashhab, Huimin Kong, Na Gan, Fang He, Fei Yin
Author Information
  1. Jing Peng: Department of Pediatrics, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, China.

Abstract

Mesial temporal lobe epilepsy (MTLE) is a particularly devastating form of human epilepsy with significant incidence of medical intractability. MicroRNAs (miRs) are small, noncoding RNAs that regulate the posttranscriptional expression of protein-coding mRNAs, which may have key roles in the pathogenesis of MTLE development. To study the dynamic expression patterns of brain-specific miR-124 and miR-134 and inflammation-related miR-132 and miR-21, we performed qPCR on the hippocampi of immature rats at 25 days of age. Expressions were monitored in the three stages of MTEL and in the control hippocampal tissues corresponding to the same timeframes. A similar expression method was applied to hippocampi obtained from children with MTLE and normal controls. The expression patterns of miR-124 and miR-134 nearly showed the same dynamics in the three stages of MTLE development. On the other hand, miR-132 and miR-21 showed significant upregulation in acute and chronic stages, while in the latent stage, miR-132 was upregulated and miR-21 was downregulated. The four miRs were upregulated in hippocampal tissues obtained from children with MTLE. The significant upregulation of miR-124 and miR-134 in the seizure-related stages and children suggested that both can be potential targets for anticonvulsant drugs in the epileptic developing brains, while the different expression patterns of miR-132 and miR-21 may suggest different functions in MTLE pathogenesis.

References

  1. Zhongguo Dang Dai Er Ke Za Zhi. 2010 May;12(5):373-6 [PMID: 20497647]
  2. Neuron. 2007 Jun 7;54(5):813-29 [PMID: 17553428]
  3. J Neurophysiol. 2001 Mar;85(3):1067-77 [PMID: 11247977]
  4. Epilepsia. 2012 Jul;53(7):1215-24 [PMID: 22708826]
  5. Neuromolecular Med. 2009;11(3):133-40 [PMID: 19458942]
  6. Brain Res. 2011 Apr 28;1387:134-40 [PMID: 21376023]
  7. PLoS One. 2008;3(11):e3740 [PMID: 19011694]
  8. Neurosci Lett. 2011 Jan 25;488(3):252-7 [PMID: 21094214]
  9. Nat Med. 2012 Jul;18(7):1087-94 [PMID: 22683779]
  10. Epilepsy Curr. 2002 May;2(3):86-91 [PMID: 15309153]
  11. Curr Biol. 2002 Apr 30;12(9):735-9 [PMID: 12007417]
  12. Neurology. 1996 Aug;47(2):562-8 [PMID: 8757039]
  13. Trends Mol Med. 2011 Oct;17(10):548-55 [PMID: 21813326]
  14. Neuromolecular Med. 2012 Dec;14(4):244-61 [PMID: 22810393]
  15. Epilepsy Behav. 2009 Jan;14 Suppl 1:16-25 [PMID: 18835369]
  16. Immunity. 2009 Dec 18;31(6):965-73 [PMID: 20005135]
  17. Mol Cell Biol. 2007 Mar;27(5):1859-67 [PMID: 17194750]
  18. FEBS J. 2010 Oct;277(20):4299-307 [PMID: 20840605]
  19. Mol Cell Neurosci. 2010 Jan;43(1):146-56 [PMID: 19850129]
  20. Nature. 2006 Jan 19;439(7074):283-9 [PMID: 16421561]
  21. Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):360-5 [PMID: 14691248]
  22. Lancet Neurol. 2002 Jul;1(3):173-81 [PMID: 12849486]
  23. RNA. 2003 Oct;9(10):1274-81 [PMID: 13130141]
  24. BMC Res Notes. 2012 Feb 13;5:92 [PMID: 22330228]
  25. J Immunol. 2009 Apr 15;182(8):4994-5002 [PMID: 19342679]
  26. Cell Mol Life Sci. 2012 Sep;69(18):3127-45 [PMID: 22535415]
  27. Neurology. 2009 May 19;72(20):1718-9 [PMID: 19321843]
  28. Exp Neurol. 2012 Oct;237(2):346-54 [PMID: 22771761]
  29. Neuron. 2009 Nov 12;64(3):303-9 [PMID: 19914179]
  30. Hippocampus. 2010 Apr;20(4):492-8 [PMID: 19557767]
  31. Brain Res. 2011 Nov 18;1424:53-9 [PMID: 22019057]
  32. Epilepsia. 2005 Nov;46(11):1724-43 [PMID: 16302852]
  33. PLoS One. 2007 Jul 11;2(7):e610 [PMID: 17622355]
  34. J Neuroinflammation. 2009 Dec 19;6:38 [PMID: 20021679]
  35. Cell Death Dis. 2012 Mar 22;3:e287 [PMID: 22436728]
  36. PLoS One. 2012;7(5):e35921 [PMID: 22615744]
  37. Hum Pathol. 2009 Sep;40(9):1234-43 [PMID: 19427019]
  38. Epilepsia. 2000;41 Suppl 6:S14-7 [PMID: 10999513]
  39. Nat Rev Neurosci. 2010 May;11(5):329-38 [PMID: 20354535]
  40. J Neurosci Res. 2011 Feb;89(2):212-21 [PMID: 21162128]
  41. Biomed Res. 2011 Apr;32(2):135-41 [PMID: 21551949]
  42. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12481-6 [PMID: 16885212]
  43. Brain Res. 2012 Feb 3;1436:20-33 [PMID: 22197703]
  44. Eur J Neurosci. 2010 Mar;31(6):1100-7 [PMID: 20214679]
  45. Genes Dev. 2007 Apr 1;21(7):744-9 [PMID: 17403776]
  46. Eur J Neurosci. 2005 Mar;21(6):1469-77 [PMID: 15845075]
  47. Hippocampus. 1997;7(5):472-88 [PMID: 9347345]
  48. Am J Pathol. 2011 Nov;179(5):2519-32 [PMID: 21945804]
  49. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10355-60 [PMID: 21636785]

MeSH Term

Animals
Child
Epilepsy, Temporal Lobe
Hippocampus
Humans
MicroRNAs
Rats
Rats, Sprague-Dawley
Transcription, Genetic

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0MTLEexpressionmiR-132miR-21patternsmiR-124miR-134stageschildrenepilepsysignificanttemporallobemiRsmaypathogenesisdevelopmenthippocampiimmaturethreehippocampaltissuesobtainedshowedupregulationupregulateddifferentMesialparticularlydevastatingformhumanincidencemedicalintractabilityMicroRNAssmallnoncodingRNAsregulateposttranscriptionalprotein-codingmRNAskeyrolesstudydynamicbrain-specificinflammation-relatedperformedqPCRrats25 daysageExpressionsmonitoredMTELcontrolcorrespondingtimeframessimilarmethodappliednormalcontrolsnearlydynamicshandacutechroniclatentstagedownregulatedfourseizure-relatedsuggestedcanpotentialtargetsanticonvulsantdrugsepilepticdevelopingbrainssuggestfunctionsExpressionratmodelmesial

Similar Articles

Cited By