Parallel photonic information processing at gigabyte per second data rates using transient states.

Daniel Brunner, Miguel C Soriano, Claudio R Mirasso, Ingo Fischer
Author Information
  1. Daniel Brunner: Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca E-07122, Spain. dbrunner@ifisc.uib-csic.es

Abstract

The increasing demands on information processing require novel computational concepts and true parallelism. Nevertheless, hardware realizations of unconventional computing approaches never exceeded a marginal existence. While the application of optics in super-computing receives reawakened interest, new concepts, partly neuro-inspired, are being considered and developed. Here we experimentally demonstrate the potential of a simple photonic architecture to process information at unprecedented data rates, implementing a learning-based approach. A semiconductor laser subject to delayed self-feedback and optical data injection is employed to solve computationally hard tasks. We demonstrate simultaneous spoken digit and speaker recognition and chaotic time-series prediction at data rates beyond 1 Gbyte/s. We identify all digits with very low classification errors and perform chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic information processing, cognitive and information science.

References

  1. Nat Commun. 2011 Sep 13;2:468 [PMID: 21915110]
  2. Nat Commun. 2010 Jun 15;1:29 [PMID: 20975692]
  3. Sci Rep. 2012;2:287 [PMID: 22371825]
  4. Opt Express. 2012 Jan 30;20(3):3241-9 [PMID: 22330562]
  5. Phys Rev Lett. 2012 Jun 15;108(24):244101 [PMID: 23004274]
  6. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  7. Chaos. 2010 Sep;20(3):037101 [PMID: 20887067]
  8. Phys Rev A Gen Phys. 1989 Dec 1;40(11):6354-6365 [PMID: 9902029]
  9. Opt Express. 2013 Jan 14;21(1):12-20 [PMID: 23388891]
  10. Opt Express. 2012 Sep 24;20(20):22783-95 [PMID: 23037429]
  11. Sci Rep. 2012;2:514 [PMID: 22816038]
  12. IEEE Trans Neural Netw. 2011 Jan;22(1):131-44 [PMID: 21075721]