Transcriptome analysis of rice root heterosis by RNA-Seq.

Rongrong Zhai, Yue Feng, Huimin Wang, Xiaodeng Zhan, Xihong Shen, Weiming Wu, Yingxin Zhang, Daibo Chen, Gaoxing Dai, Zhanlie Yang, Liyong Cao, Shihua Cheng
Author Information
  1. Rongrong Zhai: State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.

Abstract

BACKGROUND: Heterosis is a phenomenon in which hybrids exhibit superior performance relative to parental phenotypes. In addition to the heterosis of above-ground agronomic traits on which most existing studies have focused, root heterosis is also an indispensable component of heterosis in the entire plant and of major importance to plant breeding. Consequently, systematic investigations of root heterosis, particularly in reproductive-stage rice, are needed. The recent advent of RNA sequencing technology (RNA-Seq) provides an opportunity to conduct in-depth transcript profiling for heterosis studies.
RESULTS: Using the Illumina HiSeq 2000 platform, the root transcriptomes of the super-hybrid rice variety Xieyou 9308 and its parents were analyzed at tillering and heading stages. Approximately 391 million high-quality paired-end reads (100-bp in size) were generated and aligned against the Nipponbare reference genome. We found that 38,872 of 42,081 (92.4%) annotated transcripts were represented by at least one sequence read. A total of 829 and 4186 transcripts that were differentially expressed between the hybrid and its parents (DGHP) were identified at tillering and heading stages, respectively. Out of the DGHP, 66.59% were down-regulated at the tillering stage and 64.41% were up-regulated at the heading stage. At the heading stage, the DGHP were significantly enriched in pathways related to processes such as carbohydrate metabolism and plant hormone signal transduction, with most of the key genes that are involved in the two pathways being up-regulated in the hybrid. Several significant DGHP that could be mapped to quantitative trait loci (QTLs) for yield and root traits are also involved in carbohydrate metabolism and plant hormone signal transduction pathways.
CONCLUSIONS: An extensive transcriptome dataset was obtained by RNA-Seq, giving a comprehensive overview of the root transcriptomes at tillering and heading stages in a heterotic rice cross and providing a useful resource for the rice research community. Using comparative transcriptome analysis, we detected DGHP and identified a group of potential candidate transcripts. The changes in the expression of the candidate transcripts may lay a foundation for future studies on molecular mechanisms underlying root heterosis.

References

  1. Planta. 2012 Jan;235(1):25-38 [PMID: 21805151]
  2. Biochemistry. 1995 Nov 14;34(45):14626-36 [PMID: 7578071]
  3. BMC Genomics. 2011 Mar 16;12:149 [PMID: 21406116]
  4. Genetics. 2006 Jan;172(1):507-17 [PMID: 16172500]
  5. Theor Appl Genet. 2010 Jan;120(2):383-8 [PMID: 19526205]
  6. Genome Res. 2010 May;20(5):646-54 [PMID: 20305017]
  7. Biochemistry. 1998 Feb 24;37(8):2327-35 [PMID: 9485379]
  8. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  9. BMC Genomics. 2010 Nov 12;11:630 [PMID: 21073700]
  10. Science. 2009 May 1;324(5927):659-62 [PMID: 19407207]
  11. Plant Physiol. 1986 Nov;82(3):658-63 [PMID: 16665087]
  12. Plant Physiol. 2004 Apr;134(4):1813-23 [PMID: 15064384]
  13. Plant Physiol. 1988 May;87(1):50-7 [PMID: 16666126]
  14. Ann Bot. 2007 Nov;100(5):959-66 [PMID: 17704538]
  15. Trends Plant Sci. 2007 Sep;12(9):427-32 [PMID: 17720610]
  16. Plant Cell Physiol. 2006 Aug;47(8):1112-23 [PMID: 16854941]
  17. Theor Appl Genet. 2006 Nov;113(7):1283-94 [PMID: 16932881]
  18. Science. 1908 Oct 2;28(718):454-5 [PMID: 17771943]
  19. Plant Physiol. 2012 Apr;158(4):1666-84 [PMID: 22383541]
  20. Plant Cell. 2010 Jan;22(1):17-33 [PMID: 20086188]
  21. J Bacteriol. 1993 Jun;175(11):3259-68 [PMID: 8501030]
  22. Plant Cell. 2007 Dec;19(12):3901-14 [PMID: 18065689]
  23. Science. 1910 Nov 4;32(827):627-8 [PMID: 17816706]
  24. Mol Cells. 2011 Jun;31(6):553-61 [PMID: 21533550]
  25. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7 [PMID: 16845012]
  26. Mol Plant. 2010 Nov;3(6):1012-25 [PMID: 20729474]
  27. Genetics. 1990 Nov;126(3):753-67 [PMID: 2249767]
  28. Theor Appl Genet. 2006 Feb;112(3):421-9 [PMID: 16362278]
  29. Plant Physiol. 2005 Jul;138(3):1216-31 [PMID: 16009997]
  30. J Exp Bot. 2012 Mar;63(5):2141-57 [PMID: 22213813]
  31. Plant J. 2009 Nov;60(4):575-88 [PMID: 19624469]
  32. Planta. 2008 Feb;227(3):577-87 [PMID: 17938953]
  33. Genome Res. 2010 Sep;20(9):1238-49 [PMID: 20627892]
  34. Plant Physiol. 2001 Jun;126(2):575-86 [PMID: 11402188]
  35. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  36. Plant J. 2003 Feb;33(3):543-55 [PMID: 12581312]
  37. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  38. BMC Plant Biol. 2008 Nov 11;8:114 [PMID: 19000321]
  39. Theor Appl Genet. 2010 Jan;120(2):401-13 [PMID: 19888564]
  40. Plant Cell. 2005 Nov;17(11):3007-18 [PMID: 16227453]
  41. Genetics. 2005 Nov;171(3):1267-75 [PMID: 16020790]
  42. Plant Physiol. 2007 Mar;143(3):1220-30 [PMID: 17259288]
  43. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 [PMID: 9843981]
  44. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  45. Mol Plant. 2012 Jan;5(1):176-86 [PMID: 21976713]
  46. Mol Plant. 2008 Sep;1(5):720-31 [PMID: 19825576]
  47. Plant Mol Biol. 2006 Feb;60(3):343-63 [PMID: 16514559]
  48. Genetics. 2009 Aug;182(4):943-54 [PMID: 19474198]
  49. Proc Natl Acad Sci U S A. 2012 May 1;109(18):7109-14 [PMID: 22493265]
  50. Science. 2004 Dec 24;306(5705):2206-11 [PMID: 15618507]
  51. Plant Biotechnol J. 2006 Mar;4(2):145-67 [PMID: 17177793]
  52. Genome Res. 2007 Mar;17(3):264-75 [PMID: 17255553]
  53. Plant Mol Biol. 2004 Dec;56(6):839-48 [PMID: 15821984]
  54. Plant Physiol. 1989 May;90(1):29-32 [PMID: 16666751]
  55. BMC Genomics. 2010 Dec 02;11:683 [PMID: 21122150]
  56. Nature. 2009 Dec 3;462(7273):665-8 [PMID: 19898494]
  57. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7695-701 [PMID: 19372371]
  58. Plant Mol Biol. 2005 Jun;58(3):367-84 [PMID: 16021401]
  59. Plant Physiol. 1997 Mar;113(3):881-893 [PMID: 12223650]

MeSH Term

Chromosome Mapping
Gene Expression Profiling
Genome, Plant
Hybridization, Genetic
Oryza
Phenotype
Plant Roots
RNA, Plant
Real-Time Polymerase Chain Reaction
Sequence Analysis, RNA

Chemicals

RNA, Plant

Word Cloud

Created with Highcharts 10.0.0heterosisrootriceheadingDGHPplanttilleringtranscriptsstudiesRNA-SeqstagesstagepathwaystraitsalsoUsingtranscriptomesparentshybrididentifiedup-regulatedcarbohydratemetabolismhormonesignaltransductioninvolvedtranscriptomeanalysiscandidateBACKGROUND:Heterosisphenomenonhybridsexhibitsuperiorperformancerelativeparentalphenotypesadditionabove-groundagronomicexistingfocusedindispensablecomponententiremajorimportancebreedingConsequentlysystematicinvestigationsparticularlyreproductive-stageneededrecentadventRNAsequencingtechnologyprovidesopportunityconductin-depthtranscriptprofilingRESULTS:IlluminaHiSeq2000platformsuper-hybridvarietyXieyou9308analyzedApproximately391millionhigh-qualitypaired-endreads100-bpsizegeneratedalignedNipponbarereferencegenomefound3887242081924%annotatedrepresentedleastonesequencereadtotal8294186differentiallyexpressedrespectively6659%down-regulated6441%significantlyenrichedrelatedprocesseskeygenestwoSeveralsignificantmappedquantitativetraitlociQTLsyieldCONCLUSIONS:extensivedatasetobtainedgivingcomprehensiveoverviewheteroticcrossprovidingusefulresourceresearchcommunitycomparativedetectedgrouppotentialchangesexpressionmaylayfoundationfuturemolecularmechanismsunderlyingTranscriptome

Similar Articles

Cited By