Vps factors are required for efficient transcription elongation in budding yeast.

Naseem A Gaur, Jiri Hasek, Donna Garvey Brickner, Hongfang Qiu, Fan Zhang, Chi-Ming Wong, Ivana Malcova, Pavla Vasicova, Jason H Brickner, Alan G Hinnebusch
Author Information
  1. Naseem A Gaur: Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

Abstract

There is increasing evidence that certain Vacuolar protein sorting (Vps) proteins, factors that mediate vesicular protein trafficking, have additional roles in regulating transcription factors at the endosome. We found that yeast mutants lacking the phosphatidylinositol 3-phosphate [PI(3)P] kinase Vps34 or its associated protein kinase Vps15 display multiple phenotypes indicating impaired transcription elongation. These phenotypes include reduced mRNA production from long or G+C-rich coding sequences (CDS) without affecting the associated GAL1 promoter activity, and a reduced rate of RNA polymerase II (Pol II) progression through lacZ CDS in vivo. Consistent with reported genetic interactions with mutations affecting the histone acetyltransferase complex NuA4, vps15Δ and vps34Δ mutations reduce NuA4 occupancy in certain transcribed CDS. vps15Δ and vps34Δ mutants also exhibit impaired localization of the induced GAL1 gene to the nuclear periphery. We found unexpectedly that, similar to known transcription elongation factors, these and several other Vps factors can be cross-linked to the CDS of genes induced by Gcn4 or Gal4 in a manner dependent on transcriptional induction and stimulated by Cdk7/Kin28-dependent phosphorylation of the Pol II C-terminal domain (CTD). We also observed colocalization of a fraction of Vps15-GFP and Vps34-GFP with nuclear pores at nucleus-vacuole (NV) junctions in live cells. These findings suggest that Vps factors enhance the efficiency of transcription elongation in a manner involving their physical proximity to nuclear pores and transcribed chromatin.

References

  1. Mol Biol Cell. 2000 Jul;11(7):2445-57 [PMID: 10888680]
  2. Mol Cell Biol. 2004 May;24(10):4104-17 [PMID: 15121833]
  3. J Biol Chem. 1982 Nov 10;257(21):13062-7 [PMID: 6215406]
  4. Mol Cell Biol. 1992 Dec;12(12):5700-10 [PMID: 1333044]
  5. Cell. 2004 May 14;117(4):427-39 [PMID: 15137937]
  6. Genetics. 1993 Sep;135(1):17-23 [PMID: 8224817]
  7. Curr Biol. 1996 Dec 1;6(12):1599-608 [PMID: 8994824]
  8. Yeast. 2004 Feb;21(3):241-8 [PMID: 14968429]
  9. Mol Biol Cell. 2003 Mar;14(3):836-47 [PMID: 12631707]
  10. J Biol Chem. 2003 Oct 3;278(40):39037-43 [PMID: 12871933]
  11. Nature. 2003 Oct 16;425(6959):686-91 [PMID: 14562095]
  12. Mol Cell Biol. 2006 Apr;26(8):3135-48 [PMID: 16581788]
  13. Cell. 2012 Feb 17;148(4):702-15 [PMID: 22341443]
  14. Mol Cell. 2009 Mar 27;33(6):752-62 [PMID: 19328068]
  15. Mol Cell. 2003 May;11(5):1301-9 [PMID: 12769853]
  16. Mol Cell Biol. 2001 Oct;21(20):7054-64 [PMID: 11564888]
  17. Mol Cell Biol. 2008 Nov;28(22):6796-818 [PMID: 18794364]
  18. PLoS Biol. 2004 Nov;2(11):e342 [PMID: 15455074]
  19. Genetics. 2012 Mar;190(3):855-83 [PMID: 22419078]
  20. Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12171-6 [PMID: 15292516]
  21. Biochim Biophys Acta. 2005 Jul 10;1744(3):438-54 [PMID: 15913810]
  22. EMBO J. 2003 Feb 3;22(3):612-20 [PMID: 12554661]
  23. Cell. 2003 Jul 11;114(1):99-111 [PMID: 12859901]
  24. Curr Opin Cell Biol. 2011 Jun;23(3):338-45 [PMID: 21292462]
  25. Yeast. 2004 Aug;21(11):947-62 [PMID: 15334558]
  26. Mol Cell. 2005 Mar 18;17(6):831-40 [PMID: 15780939]
  27. Gene. 1988 Dec 30;74(2):527-34 [PMID: 3073106]
  28. Yeast. 2005 Nov;22(15):1181-90 [PMID: 16278936]
  29. Genes Dev. 1998 Feb 1;12(3):357-69 [PMID: 9450930]
  30. Yeast. 1995 Mar;11(3):219-24 [PMID: 7785322]
  31. J Biol Chem. 2009 Mar 13;284(11):7376-84 [PMID: 19141610]
  32. Mol Cell. 2009 Nov 25;36(4):541-6 [PMID: 19941815]
  33. Annu Rev Microbiol. 2005;59:407-50 [PMID: 16153175]
  34. EMBO J. 2002 Jul 1;21(13):3526-35 [PMID: 12093753]
  35. Trends Cell Biol. 2010 Jan;20(1):25-35 [PMID: 19846310]
  36. J Biol Chem. 2001 May 11;276(19):16528-33 [PMID: 11278625]
  37. Mol Cell. 2012 Jan 27;45(2):158-70 [PMID: 22284676]
  38. Mol Cell Biol. 2004 Feb;24(4):1721-35 [PMID: 14749387]
  39. EMBO J. 2011 May 18;30(10):1953-64 [PMID: 21478823]
  40. Genes Dev. 2006 Nov 1;20(21):2922-36 [PMID: 17079683]
  41. Mol Cell Biol. 2005 Jul;25(13):5626-38 [PMID: 15964818]
  42. EMBO J. 2012 Aug 15;31(16):3494-505 [PMID: 22796944]
  43. EMBO J. 2002 Apr 2;21(7):1673-83 [PMID: 11927551]
  44. Genetics. 1987 Aug;116(4):541-5 [PMID: 3305158]
  45. EMBO Rep. 2004 Jan;5(1):47-53 [PMID: 14710186]
  46. Genes Dev. 2008 Oct 15;22(20):2811-22 [PMID: 18923079]
  47. Mol Cell. 2010 Jul 30;39(2):234-46 [PMID: 20670892]
  48. Genes Dev. 2011 May 1;25(9):984-95 [PMID: 21536737]
  49. Mol Cell Biol. 2003 Apr;23(8):2800-20 [PMID: 12665580]
  50. Curr Genet. 1992 Jul;22(1):9-11 [PMID: 1611672]
  51. PLoS Biol. 2007 Apr;5(4):e81 [PMID: 17373856]
  52. Cell. 2006 Jul 14;126(1):191-203 [PMID: 16839886]
  53. Nature. 2009 Mar 26;458(7237):445-52 [PMID: 19325624]
  54. Nature. 2002 Jul 25;418(6896):387-91 [PMID: 12140549]
  55. Methods Enzymol. 2010;470:569-80 [PMID: 20946825]
  56. Mol Cell Biol. 2009 Dec;29(24):6473-87 [PMID: 19822662]
  57. Mol Cell Biol. 2005 May;25(9):3461-74 [PMID: 15831453]
  58. Mol Biol Cell. 2006 Mar;17(3):1344-53 [PMID: 16407402]
  59. Annu Rev Biophys Biomol Struct. 2006;35:277-98 [PMID: 16689637]
  60. Science. 1999 Aug 6;285(5429):901-6 [PMID: 10436161]
  61. Proc Natl Acad Sci U S A. 2008 May 20;105(20):7194-9 [PMID: 18443284]
  62. Mol Cell. 2007 Jan 12;25(1):31-42 [PMID: 17218269]
  63. Mol Biol Cell. 2006 Apr;17(4):1527-39 [PMID: 16421251]
  64. EMBO J. 2000 Nov 1;19(21):5824-34 [PMID: 11060033]
  65. Genes Dev. 2008 Aug 1;22(15):2062-74 [PMID: 18676811]
  66. J Cell Sci. 2001 Jul;114(Pt 13):2383-93 [PMID: 11559747]
  67. J Biol Chem. 1998 May 1;273(18):11212-7 [PMID: 9556611]
  68. Nat Struct Mol Biol. 2010 Sep;17(9):1154-61 [PMID: 20802488]
  69. Plant Cell. 2000 Sep;12(9):1679-88 [PMID: 11006340]
  70. EMBO J. 2002 Nov 1;21(21):5843-52 [PMID: 12411502]
  71. Nature. 2006 Jun 8;441(7094):770-3 [PMID: 16760982]
  72. EMBO J. 1998 Jun 1;17(11):2982-93 [PMID: 9606181]
  73. FEBS J. 2006 Feb;273(4):756-69 [PMID: 16441662]

Grants

  1. R01 GM080484/NIGMS NIH HHS
  2. T32 GM008061/NIGMS NIH HHS

MeSH Term

Basic-Leucine Zipper Transcription Factors
Cell Nucleus
Class III Phosphatidylinositol 3-Kinases
Cyclin-Dependent Kinases
DNA-Binding Proteins
GC Rich Sequence
Galactokinase
Gene Deletion
Histone Acetyltransferases
Nuclear Pore
Phenotype
Phosphorylation
Promoter Regions, Genetic
Protein Transport
RNA Polymerase II
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Transcription Elongation, Genetic
Transcription Factors
Vacuolar Sorting Protein VPS15
Vacuoles

Chemicals

Basic-Leucine Zipper Transcription Factors
DNA-Binding Proteins
GAL4 protein, S cerevisiae
GCN4 protein, S cerevisiae
Saccharomyces cerevisiae Proteins
Transcription Factors
Histone Acetyltransferases
NuA4 protein, S cerevisiae
Class III Phosphatidylinositol 3-Kinases
GAL1 protein, S cerevisiae
Galactokinase
VPS15 protein, S cerevisiae
Vacuolar Sorting Protein VPS15
Cyclin-Dependent Kinases
Kin28 protein kinase, S cerevisiae
RNA Polymerase II

Word Cloud

Created with Highcharts 10.0.0factorstranscriptionVpselongationCDSproteinIInuclearcertainfoundyeastmutantskinaseassociatedphenotypesimpairedreducedaffectingGAL1PolmutationsNuA4vps15Δvps34ΔtranscribedalsoinducedmannerporesincreasingevidenceVacuolarsortingproteinsmediatevesiculartraffickingadditionalrolesregulatingendosomelackingphosphatidylinositol3-phosphate[PI3P]Vps34Vps15displaymultipleindicatingincludemRNAproductionlongG+C-richcodingsequenceswithoutpromoteractivityrateRNApolymeraseprogressionlacZvivoConsistentreportedgeneticinteractionshistoneacetyltransferasecomplexreduceoccupancyexhibitlocalizationgeneperipheryunexpectedlysimilarknownseveralcancross-linkedgenesGcn4Gal4dependenttranscriptionalinductionstimulatedCdk7/Kin28-dependentphosphorylationC-terminaldomainCTDobservedcolocalizationfractionVps15-GFPVps34-GFPnucleus-vacuoleNVjunctionslivecellsfindingssuggestenhanceefficiencyinvolvingphysicalproximitychromatinrequiredefficientbudding

Similar Articles

Cited By