How large should whales be?

Aaron Clauset
Author Information
  1. Aaron Clauset: Department of Computer Science, University of Colorado, Boulder, Colorado, United States of America. aaron.clauset@colorado.edu

Abstract

The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2 g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000 g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000 g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.

References

  1. Trends Ecol Evol. 2007 Jun;22(6):323-30 [PMID: 17399851]
  2. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18404-8 [PMID: 18003931]
  3. C R Biol. 2006 Apr;329(4):277-88 [PMID: 16644500]
  4. Nature. 2007 Dec 13;450(7172):1011-9 [PMID: 18075580]
  5. Am Sci. 1977 Jan-Feb;65(1):50-7 [PMID: 842931]
  6. Science. 2004 Oct 1;306(5693):101-4 [PMID: 15459388]
  7. Proc Natl Acad Sci U S A. 1975 Feb;72(2):646-50 [PMID: 1054846]
  8. Science. 1998 May 1;280(5364):731-4 [PMID: 9563948]
  9. Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6097-102 [PMID: 18417455]
  10. Philos Trans R Soc Lond B Biol Sci. 2011 Aug 27;366(1576):2364-78 [PMID: 21768152]
  11. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3395-400 [PMID: 22308490]
  12. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12184-8 [PMID: 19581600]
  13. Science. 2008 Jul 18;321(5887):399-401 [PMID: 18635801]
  14. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4087-91 [PMID: 8483925]
  15. Nature. 2012 Mar 14;483(7390):457-60 [PMID: 22419156]
  16. Phys Rev Lett. 2009 Jan 23;102(3):038103 [PMID: 19257399]
  17. Evolution. 1973 Mar;27(1):1-26 [PMID: 28563664]
  18. Proc Natl Acad Sci U S A. 2002 Feb 19;99 Suppl 1:2473-8 [PMID: 11875197]
  19. Ecol Lett. 2006 May;9(5):630-43 [PMID: 16643307]
  20. Evolution. 1994 Dec;48(6):1747-1763 [PMID: 28565153]
  21. Trans Kans Acad Sci. 1968 Summer;71(2):201-27 [PMID: 5672063]
  22. Am Nat. 2009 Feb;173(2):256-63 [PMID: 19090772]
  23. Science. 1948 Jul 9;108(2793):44 [PMID: 17739234]
  24. PLoS One. 2012;7(9):e44854 [PMID: 23024769]

MeSH Term

Animals
Body Size
Evolution, Molecular
Models, Biological
Whales

Word Cloud

Created with Highcharts 10.0.0speciestradeoffbodyterrestrialmammalssizesizesmacroevolutionarygevolutiondistributionextinctionincreasedminimumcan000ratewell-explainedshort-termselectiveadvantageslong-termrisksunfolding2inducedthermoregulationairconsiderwhetherformalizedconstrainedconvection-reaction-diffusionsystemalsoexplainfullyaquaticpreviouslyconsideredreplacingpelagiconeroughly7000mammalmodelaccuratelypredictstunableparametersobservedmassesextantcetaceanincluding175BlueWhalestrongagreementtheorydatasuggestsuniversalgovernsregardlesshabitatdramaticcetaceansthusattributedmainlyconvectiveheatlosswatershiftsupwardpushesrighttailrangesinaccessiblelargestexpectedoccurssmaller-bodiedmovelarge-bodiednichesapproximatelyequalsremovesthemlargewhalesbe?

Similar Articles

Cited By