Cost-effectiveness of pneumococcal and influenza vaccination standing order programs.

Chyongchiou Jeng Lin, Richard K Zimmerman, Kenneth J Smith
Author Information
  1. Chyongchiou Jeng Lin: Department of Family Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. cjlin@pitt.edu

Abstract

OBJECTIVES: Despite the benefits of vaccination and guidelines for their use, the rates for influenza and pneumococcal vaccination remain below the 90% goal set by Healthy People 2010 for persons 65 years and older. Standing order programs (SOPs) authorize vaccination administration without physician orders. Here we examine the cost-effectiveness of SOPs to improve both pneumococcal and influenza vaccination rates in outpatient settings for individuals 65 years and older.
STUDY DESIGN: Decision analysis-based cost-effectiveness analysis.
METHODS: A Markov model was constructed to estimate the incremental cost-effectiveness of outpatient SOPs for pneumococcal polysaccharide vaccine (PPSV) and influenza vaccination in hypothetical US population cohorts 65 years and older. Vaccination rate improvement data were obtained from the medical literature. Centers for Disease Control and Prevention Active Bacterial Core surveillance data and US national databases were used to estimate costs and outcomes.
RESULTS: SOPs cost $14,171 per quality-adjusted life-year (QALY) gained compared with no program from a third-party payer perspective. In 1-way sensitivity analyses, the SOP strategy cost less than $50,000/QALY if SOPs increased absolute vaccination rates by 4% or more (base case: 18%), annual SOP costs were less than $21 per person (base case: $4.60), or annual influenza incidence was 4% or more (base case: 10%). Model results were insensitive to other individual parameter variations, and were supported by a probabilistic sensitivity analysis.
CONCLUSIONS: SOPs used to improve PPSV and influenza vaccination rates in outpatient settings is a promising and economically favorable investment, with cost-effectiveness analysis results remaining robust to parameter variation over clinically plausible ranges.

References

  1. JAMA. 2012 Feb 22;307(8):804-12 [PMID: 22357831]
  2. Med Care. 2008 Apr;46(4):349-56 [PMID: 18362813]
  3. MMWR Recomm Rep. 1999 Jun 18;48(RR-8):1-15 [PMID: 10428099]
  4. MMWR Recomm Rep. 2000 Mar 24;49(RR-1):15-6 [PMID: 15580727]
  5. Infect Control Hosp Epidemiol. 2008 May;29(5):385-94 [PMID: 18521990]
  6. Cochrane Database Syst Rev. 2007 Apr 18;(2):CD001269 [PMID: 17443504]
  7. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD000422 [PMID: 18253977]
  8. Cochrane Database Syst Rev. 2003;(4):CD000422 [PMID: 14583920]
  9. Lancet Infect Dis. 2012 Jan;12(1):36-44 [PMID: 22032844]
  10. Fed Regist. 2002 Oct 2;67(191):61808-14 [PMID: 12361062]
  11. Acad Emerg Med. 2005 Oct;12(10):1011-2 [PMID: 16204148]
  12. Vaccine. 2004 Feb 25;22(8):927-46 [PMID: 15161070]
  13. J Am Board Fam Pract. 2005 Jan-Feb;18(1):20-7 [PMID: 15709060]
  14. JAMA. 2004 Nov 17;292(19):2366-71 [PMID: 15547164]
  15. J Gen Intern Med. 1999 Jun;14(6):351-6 [PMID: 10354255]
  16. Am J Public Health. 2003 Oct;93(10):1699-705 [PMID: 14534225]
  17. Med Care. 1998 Jun;36(6):778-92 [PMID: 9630120]
  18. Vaccine. 2008 Mar 10;26(11):1420-31 [PMID: 18272262]
  19. Clin Infect Dis. 2012 May;54(10):1427-36 [PMID: 22495079]
  20. Arch Intern Med. 2003 Jul 28;163(14):1637-41 [PMID: 12885677]
  21. Vaccine. 2004 Sep 3;22(25-26):3457-63 [PMID: 15308372]
  22. JAMA. 1999 Jan 20;281(3):243-8 [PMID: 9918479]
  23. JAMA. 1996 Oct 16;276(15):1253-8 [PMID: 8849754]
  24. Am J Prev Med. 2010 Mar;38(3):247-57 [PMID: 20042311]
  25. Am J Prev Med. 2011 Feb;40(2):144-8 [PMID: 21238862]
  26. CMAJ. 2009 Jan 6;180(1):48-58 [PMID: 19124790]
  27. Clin Microbiol Rev. 2006 Jul;19(3):571-82 [PMID: 16847087]
  28. Vaccine. 2009 Nov 23;27(50):7110-5 [PMID: 19786135]
  29. Ann Intern Med. 2003 Jun 17;138(12):960-8 [PMID: 12809452]
  30. Clin Infect Dis. 2006 Oct 1;43(7):860-8 [PMID: 16941367]
  31. Ann Intern Med. 2009 Dec 15;151(12):840-53 [PMID: 20008760]
  32. Vaccine. 2010 Nov 10;28(48):7620-5 [PMID: 20887828]

Grants

  1. R01 AI076256/NIAID NIH HHS

MeSH Term

Aged
Cost-Benefit Analysis
Humans
Immunization Programs
Influenza Vaccines
Influenza, Human
Markov Chains
Pneumococcal Infections
Pneumococcal Vaccines
Quality-Adjusted Life Years
United States

Chemicals

Influenza Vaccines
Pneumococcal Vaccines

Word Cloud

Created with Highcharts 10.0.0vaccinationinfluenzaSOPsratespneumococcalcost-effectiveness65yearsolderoutpatientanalysisbasecase:orderprogramsimprovesettingsestimatePPSVUSdatausedcostscostpersensitivitySOPless4%annualresultsparameterOBJECTIVES:Despitebenefitsguidelinesuseremain90%goalsetHealthyPeople2010personsStandingauthorizeadministrationwithoutphysicianordersexamineindividualsSTUDYDESIGN:Decisionanalysis-basedMETHODS:MarkovmodelconstructedincrementalpolysaccharidevaccinehypotheticalpopulationcohortsVaccinationrateimprovementobtainedmedicalliteratureCentersDiseaseControlPreventionActiveBacterialCoresurveillancenationaldatabasesoutcomesRESULTS:$14171quality-adjustedlife-yearQALYgainedcomparedprogramthird-partypayerperspective1-wayanalysesstrategy$50000/QALYincreasedabsolute18%$21person$460incidence10%ModelinsensitiveindividualvariationssupportedprobabilisticCONCLUSIONS:promisingeconomicallyfavorableinvestmentremainingrobustvariationclinicallyplausiblerangesCost-effectivenessstanding

Similar Articles

Cited By (3)