Multi-unit recording methods to characterize neural activity in the locust (Schistocerca americana) olfactory circuits.

Debajit Saha, Kevin Leong, Nalin Katta, Baranidharan Raman
Author Information
  1. Debajit Saha: Department of Biomedical Engineering, Washington University in St. Louis, USA.

Abstract

Detection and interpretation of olfactory cues are critical for the survival of many organisms. Remarkably, species across phyla have strikingly similar olfactory systems suggesting that the biological approach to chemical sensing has been optimized over evolutionary time. In the insect olfactory system, odorants are transduced by olfactory receptor neurons (ORN) in the antenna, which convert chemical stimuli into trains of action potentials. Sensory input from the ORNs is then relayed to the antennal lobe (AL; a structure analogous to the vertebrate olfactory bulb). In the AL, neural representations for odors take the form of spatiotemporal firing patterns distributed across ensembles of principal neurons (PNs; also referred to as projection neurons). The AL output is subsequently processed by Kenyon cells (KCs) in the downstream mushroom body (MB), a structure associated with olfactory memory and learning. Here, we present electrophysiological recording techniques to monitor odor-evoked neural responses in these olfactory circuits. First, we present a single sensillum recording method to study odor-evoked responses at the level of populations of ORNs. We discuss the use of saline filled sharpened glass pipettes as electrodes to extracellularly monitor ORN responses. Next, we present a method to extracellularly monitor PN responses using a commercial 16-channel electrode. A similar approach using a custom-made 8-channel twisted wire tetrode is demonstrated for Kenyon cell recordings. We provide details of our experimental setup and present representative recording traces for each of these techniques.

References

  1. J Neurosci. 1996 Jun 15;16(12):3837-47 [PMID: 8656278]
  2. Nat Rev Neurosci. 2002 Nov;3(11):884-95 [PMID: 12415296]
  3. J Vis Exp. 2010 Feb 17;(36):1-5 [PMID: 20164822]
  4. J Vis Exp. 2012 Mar 14;(61): [PMID: 22453204]
  5. Science. 2002 Jul 19;297(5580):359-65 [PMID: 12130775]
  6. J Neurosci. 1999 Jan 1;19(1):381-90 [PMID: 9870967]
  7. Neuron. 2005 Nov 23;48(4):661-73 [PMID: 16301181]
  8. Cell. 2006 Apr 7;125(1):143-60 [PMID: 16615896]
  9. Neuron. 2005 Nov 3;48(3):417-30 [PMID: 16269360]
  10. J Neurosci. 2010 Feb 10;30(6):1994-2006 [PMID: 20147528]
  11. Nature. 2012 Jan 25;482(7383):47-52 [PMID: 22278062]
  12. Nat Neurosci. 2005 Nov;8(11):1568-76 [PMID: 16222230]
  13. J Neurosci Methods. 1997 Sep 5;76(1):61-9 [PMID: 9334940]
  14. Neural Comput. 2004 May;16(5):999-1012 [PMID: 15070507]
  15. Front Neural Circuits. 2007 Nov 02;1:2 [PMID: 18946544]
  16. Nat Neurosci. 2000 Sep;3(9):927-31 [PMID: 10966624]
  17. Chem Senses. 2004 Mar;29(3):253-67 [PMID: 15047600]
  18. Science. 1996 Nov 8;274(5289):976-9 [PMID: 8875938]
  19. Cell Tissue Res. 1998 Mar;291(3):525-36 [PMID: 9477309]
  20. J Neurosci Methods. 2002 Dec 31;122(1):43-57 [PMID: 12535763]
  21. Neuron. 2009 Feb 26;61(4):570-86 [PMID: 19249277]
  22. J Neurosci. 2012 Apr 25;32(17):5772-82 [PMID: 22539839]
  23. Neuron. 2003 Sep 11;39(6):991-1004 [PMID: 12971898]
  24. Nat Neurosci. 2008 Oct;11(10):1177-84 [PMID: 18794840]
  25. Science. 1994 Feb 4;263(5147):692-5 [PMID: 8303280]
  26. J Neurosci. 1994 May;14(5 Pt 2):2993-3004 [PMID: 8182454]
  27. J Neurosci. 1993 Feb;13(2):808-19 [PMID: 8426238]

MeSH Term

Animals
Electrodes
Electrophysiology
Female
Grasshoppers
Male
Neurons
Odorants
Olfactory Receptor Neurons
Sensilla

Word Cloud

Created with Highcharts 10.0.0olfactorypresentrecordingresponsesneuronsALneuralmonitoracrosssimilarapproachchemicalORNORNsstructureKenyontechniquesodor-evokedcircuitsmethodextracellularlyusingDetectioninterpretationcuescriticalsurvivalmanyorganismsRemarkablyspeciesphylastrikinglysystemssuggestingbiologicalsensingoptimizedevolutionarytimeinsectsystemodorantstransducedreceptorantennaconvertstimulitrainsactionpotentialsSensoryinputrelayedantennallobeanalogousvertebratebulbrepresentationsodorstakeformspatiotemporalfiringpatternsdistributedensemblesprincipalPNsalsoreferredprojectionoutputsubsequentlyprocessedcellsKCsdownstreammushroombodyMBassociatedmemorylearningelectrophysiologicalFirstsinglesensillumstudylevelpopulationsdiscussusesalinefilledsharpenedglasspipetteselectrodesNextPNcommercial16-channelelectrodecustom-made8-channeltwistedwiretetrodedemonstratedcellrecordingsprovidedetailsexperimentalsetuprepresentativetracesMulti-unitmethodscharacterizeactivitylocustSchistocercaamericana

Similar Articles

Cited By