A developmental transcriptional network for maize defines coexpression modules.

Gregory S Downs, Yong-Mei Bi, Joseph Colasanti, Wenqing Wu, Xi Chen, Tong Zhu, Steven J Rothstein, Lewis N Lukens
Author Information
  1. Gregory S Downs: Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G2W1.

Abstract

Here, we present a genome-wide overview of transcriptional circuits in the agriculturally significant crop species maize (Zea mays). We examined transcript abundance data at 50 developmental stages, from embryogenesis to senescence, for 34,876 gene models and classified genes into 24 robust coexpression modules. Modules were strongly associated with tissue types and related biological processes. Sixteen of the 24 modules (67%) have preferential transcript abundance within specific tissues. One-third of modules had an absence of gene expression in specific tissues. Genes within a number of modules also correlated with the developmental age of tissues. Coexpression of genes is likely due to transcriptional control. For a number of modules, key genes involved in transcriptional control have expression profiles that mimic the expression profiles of module genes, although the expression of transcriptional control genes is not unusually representative of module gene expression. Known regulatory motifs are enriched in several modules. Finally, of the 13 network modules with more than 200 genes, three contain genes that are notably clustered (P < 0.05) within the genome. This work, based on a carefully selected set of major tissues representing diverse stages of maize development, demonstrates the remarkable power of transcript-level coexpression networks to identify underlying biological processes and their molecular components.

Associated Data

GEO | GSE44743

References

  1. Theor Appl Genet. 2011 Jun;123(1):11-20 [PMID: 21404061]
  2. Plant Physiol. 2002 Apr;128(4):1332-45 [PMID: 11950982]
  3. Nat Genet. 2009 Feb;41(2):258-63 [PMID: 19122662]
  4. Plant J. 2008 Aug;55(3):504-13 [PMID: 18410479]
  5. Nat Genet. 2008 Jul;40(7):854-61 [PMID: 18552845]
  6. Plant Cell. 2011 Mar;23(3):895-910 [PMID: 21441431]
  7. Curr Genomics. 2008 Dec;9(8):525-34 [PMID: 19516959]
  8. Genome Biol. 2004;5(10):R80 [PMID: 15461798]
  9. Plant Physiol. 2010 Sep;154(1):13-24 [PMID: 20668062]
  10. Science. 2001 Feb 16;291(5507):1289-92 [PMID: 11181992]
  11. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  12. PLoS Comput Biol. 2008 Aug 15;4(8):e1000117 [PMID: 18704157]
  13. Plant Cell Rep. 2007 Jul;26(7):845-59 [PMID: 17356883]
  14. Funct Integr Genomics. 2006 Jul;6(3):202-11 [PMID: 16547597]
  15. Plant J. 2006 Feb;45(3):347-57 [PMID: 16412082]
  16. J Mol Biol. 1985 Sep 20;185(2):341-58 [PMID: 2997449]
  17. Mol Syst Biol. 2011 Jan 18;7:459 [PMID: 21245844]
  18. Nature. 2004 Sep 16;431(7006):308-12 [PMID: 15372033]
  19. PLoS One. 2010 Apr 13;5(4):e10157 [PMID: 20405016]
  20. Curr Opin Plant Biol. 2010 Apr;13(2):126-31 [PMID: 20036612]
  21. Plant J. 2011 May;66(4):553-63 [PMID: 21299659]
  22. Science. 2009 Nov 20;326(5956):1112-5 [PMID: 19965430]
  23. BMC Bioinformatics. 2007 Jan 24;8:22 [PMID: 17250769]
  24. Nat Neurosci. 2008 Nov;11(11):1271-82 [PMID: 18849986]
  25. PLoS Genet. 2009 Nov;5(11):e1000734 [PMID: 19956538]
  26. Nat Genet. 2002 Jun;31(2):180-3 [PMID: 11992122]
  27. Nat Genet. 2005 May;37(5):501-6 [PMID: 15806101]
  28. Development. 1996 Feb;122(2):481-9 [PMID: 8625799]
  29. Bioinformatics. 2006 Jul 1;22(13):1600-7 [PMID: 16606683]
  30. Nat Rev Genet. 2004 Feb;5(2):101-13 [PMID: 14735121]
  31. Plant Physiol. 2009 Jan;149(1):171-80 [PMID: 18987217]
  32. BMC Bioinformatics. 2005 Feb 15;6:31 [PMID: 15713233]
  33. Plant Cell Physiol. 2011 May;52(5):785-803 [PMID: 21441235]
  34. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5319-24 [PMID: 11607683]
  35. Nat Rev Genet. 2010 Dec;11(12):830-42 [PMID: 21063441]
  36. Theor Appl Genet. 2010 Jan;120(2):355-67 [PMID: 19756477]
  37. BMC Syst Biol. 2007 Nov 21;1:54 [PMID: 18031580]
  38. Science. 2002 Aug 30;297(5586):1551-5 [PMID: 12202830]
  39. Bioinformatics. 2007 Jan 15;23(2):222-31 [PMID: 17110366]
  40. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  41. Plant Physiol. 2011 Jul;156(3):1244-56 [PMID: 21606319]
  42. Plant Mol Biol. 1995 Nov;29(4):809-21 [PMID: 8541506]
  43. Plant Physiol. 2011 Jul;156(3):1316-30 [PMID: 21571672]
  44. BMC Bioinformatics. 2006 Jan 27;7:46 [PMID: 16441884]
  45. Plant Physiol. 2005 May;138(1):80-91 [PMID: 15888681]
  46. Nature. 2004 Jan 8;427(6970):159-64 [PMID: 14712276]
  47. Plant Cell. 2012 Jul;24(7):2745-64 [PMID: 22822204]
  48. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  49. Nucleic Acids Res. 1999 Jan 1;27(1):295-6 [PMID: 9847207]
  50. Genome Res. 2010 Dec;20(12):1689-99 [PMID: 21036921]
  51. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1560-5 [PMID: 22238427]
  52. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7685-90 [PMID: 9207153]
  53. Plant Mol Biol. 1998 Nov 1;38(4):633-46 [PMID: 9747808]
  54. Genes Dev. 2012 Aug 1;26(15):1685-90 [PMID: 22855831]
  55. Nucleic Acids Res. 1999 Jan 1;27(1):297-300 [PMID: 9847208]

MeSH Term

Base Sequence
Cluster Analysis
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Gene Regulatory Networks
Genes, Plant
Molecular Sequence Data
Nucleotide Motifs
Oligonucleotide Array Sequence Analysis
Organ Specificity
Plant Leaves
Promoter Regions, Genetic
RNA, Messenger
Transcription, Genetic
Zea mays

Chemicals

RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0modulesgenestranscriptionalexpressiontissuesmaizedevelopmentalgenecoexpressionwithincontroltranscriptabundancestages24biologicalprocessesspecificnumberprofilesmodulenetworkpresentgenome-wideoverviewcircuitsagriculturallysignificantcropspeciesZeamaysexamineddata50embryogenesissenescence34876modelsclassifiedrobustModulesstronglyassociatedtissuetypesrelatedSixteen67%preferentialOne-thirdabsenceGenesalsocorrelatedageCoexpressionlikelyduekeyinvolvedmimicalthoughunusuallyrepresentativeKnownregulatorymotifsenrichedseveralFinally13200threecontainnotablyclusteredP<005genomeworkbasedcarefullyselectedsetmajorrepresentingdiversedevelopmentdemonstratesremarkablepowertranscript-levelnetworksidentifyunderlyingmolecularcomponentsdefines

Similar Articles

Cited By