Tumor suppressor p16(INK4a) inhibits cancer cell growth by downregulating eEF1A2 through a direct interaction.

Mee-Hyun Lee, Bu Young Choi, Yong-Yeon Cho, Sung-Young Lee, Zunnan Huang, Joydeb Kumar Kundu, Myoung Ok Kim, Dong Joon Kim, Ann M Bode, Young-Joon Surh, Zigang Dong
Author Information
  1. Mee-Hyun Lee: The Hormel Institute, University of Minnesota, MN 55912, USA.

Abstract

The tumor suppressor protein p16(INK4a) is a member of the INK4 family of cyclin-dependent kinase (Cdk) inhibitors, which are involved in the regulation of the eukaryotic cell cycle. However, the mechanisms underlying the anti-proliferative effects of p16(INK4a) have not been fully elucidated. Using yeast two-hybrid screening, we identified the eukaryotic elongation factor (eEF)1A2 as a novel interacting partner of p16(INK4a). eEF1A2 is thought to function as an oncogene in cancers. The p16(INK4a) protein interacted with all but the D2 (250-327 aa) domain of eEF1A2. Ectopic expression of p16(INK4a) decreased the expression of eEF1A2 and inhibited cancer cell growth. Furthermore, suppression of protein synthesis by expression of p16(INK4a) ex vivo was verified by luciferase reporter activity. Microinjection of p16(INK4a) mRNA into the cytoplasm of Xenopus embryos suppressed the luciferase mRNA translation, whereas the combination of p16(INK4a) and morpholino-eEF1A2 resulted in a further reduction in translational activity. We conclude that the interaction of p16(INK4a) with eEF1A2, and subsequent downregulation of the expression and function of eEF1A2 is a novel mechanism explaining the anti-proliferative effects of p16(INK4a).

Keywords

References

  1. Dev Biol. 1982 Jan;89(1):159-67 [PMID: 7033020]
  2. PLoS One. 2010 May 21;5(5):e10755 [PMID: 20505761]
  3. Nat Med. 2004 May;10(5):484-6 [PMID: 15098029]
  4. Annu Rev Biochem. 1985;54:1109-49 [PMID: 3896117]
  5. Genes Dev. 1999 Jun 15;13(12):1501-12 [PMID: 10385618]
  6. Biosci Biotechnol Biochem. 2002 Jan;66(1):1-21 [PMID: 11866090]
  7. Proteins. 2007 Nov 15;69(3):511-20 [PMID: 17623839]
  8. Cell. 2001 Sep 7;106(5):531-4 [PMID: 11551500]
  9. PLoS One. 2009 Jul 28;4(7):e6315 [PMID: 19636410]
  10. Science. 1994 Dec 16;266(5192):1821-8 [PMID: 7997877]
  11. Nature. 1993 Dec 16;366(6456):704-7 [PMID: 8259215]
  12. Nucleic Acids Res. 1998 Apr 15;26(8):1884-90 [PMID: 9518480]
  13. J Biol Chem. 1992 Nov 25;267(33):24064-8 [PMID: 1385435]
  14. Biochim Biophys Acta. 1998 Oct 14;1378(2):F115-77 [PMID: 9823374]
  15. Curr Cancer Drug Targets. 2002 Dec;2(4):309-36 [PMID: 12470209]
  16. Nat Genet. 1994 Sep;8(1):27-32 [PMID: 7726912]
  17. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  18. J Biol Chem. 2001 Jun 22;276(25):22915-22 [PMID: 11294870]
  19. Nat Struct Mol Biol. 2005 Aug;12(8):699-707 [PMID: 16007099]
  20. Eur J Biochem. 2002 Nov;269(22):5360-8 [PMID: 12423334]
  21. Breast Cancer Res Treat. 2007 Mar;102(1):31-41 [PMID: 16897428]
  22. Mol Cell. 2004 Jun 18;14(6):813-23 [PMID: 15200958]
  23. Genomics. 1996 Sep 1;36(2):359-61 [PMID: 8812466]
  24. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286-90 [PMID: 4524638]
  25. Curr Opin Pharmacol. 2005 Aug;5(4):366-73 [PMID: 15964238]
  26. Gynecol Oncol. 2008 Mar;108(3):561-8 [PMID: 18164751]
  27. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1371-7 [PMID: 7945283]
  28. Mol Oncol. 2009 Dec;3(5-6):402-8 [PMID: 19546037]
  29. Proteins. 2003 Jul 1;52(1):80-7 [PMID: 12784371]
  30. Oncogene. 2007 May 10;26(21):3027-40 [PMID: 17130842]
  31. Cell. 2009 Feb 20;136(4):731-45 [PMID: 19239892]
  32. Cell Death Dis. 2012 Mar 01;3:e276 [PMID: 22378069]
  33. Nature. 2001 Sep 6;413(6851):83-6 [PMID: 11544530]
  34. Biotech Histochem. 2004 Feb;79(1):5-10 [PMID: 15223748]
  35. Cold Spring Harb Symp Quant Biol. 1994;59:259-63 [PMID: 7587077]
  36. Ann N Y Acad Sci. 2009 Aug;1171:87-93 [PMID: 19723040]
  37. Oncogene. 2007 Sep 6;26(41):5973-90 [PMID: 17404576]
  38. Int J Biochem Cell Biol. 2008;40(1):63-71 [PMID: 17936057]
  39. Mol Carcinog. 2004 Jul;40(3):171-9 [PMID: 15224349]
  40. Eur J Biochem. 1993 Aug 1;215(3):549-54 [PMID: 8354261]
  41. Proteins. 2003 May 15;51(3):397-408 [PMID: 12696051]
  42. J Biol Chem. 1993 Nov 15;268(32):24453-9 [PMID: 8226996]
  43. Exp Cell Res. 1995 Aug;219(2):589-97 [PMID: 7641810]
  44. BMC Cancer. 2005 Sep 12;5:113 [PMID: 16156888]
  45. Lancet Oncol. 2004 Jan;5(1):27-36 [PMID: 14700606]
  46. Nat Rev Cancer. 2003 Mar;3(3):179-92 [PMID: 12612653]
  47. Br J Cancer. 2012 Jan 3;106(1):166-73 [PMID: 22095224]
  48. Nat Genet. 2002 Jul;31(3):301-5 [PMID: 12053177]

Grants

  1. CA120388/NCI NIH HHS
  2. R37 CA081064/NCI NIH HHS
  3. R01 CA120388/NCI NIH HHS
  4. ES016548/NIEHS NIH HHS
  5. R01 ES016548/NIEHS NIH HHS

MeSH Term

Animals
Blotting, Western
CHO Cells
COS Cells
Cell Line, Tumor
Cell Proliferation
Chlorocebus aethiops
Cricetinae
Cricetulus
Cyclin-Dependent Kinase Inhibitor p16
HeLa Cells
Humans
Immunoprecipitation
Peptide Elongation Factor 1
Protein Binding
Two-Hybrid System Techniques
Xenopus laevis

Chemicals

Cyclin-Dependent Kinase Inhibitor p16
EEF1A2 protein, human
Peptide Elongation Factor 1

Word Cloud

Created with Highcharts 10.0.0p16INK4aeEF1A2expressionproteincelleffectscanceractivitysuppressoreukaryoticanti-proliferativenovelfunctiongrowthluciferasemRNAinteractiontumormemberINK4familycyclin-dependentkinaseCdkinhibitorsinvolvedregulationcycleHowevermechanismsunderlyingfullyelucidatedUsingyeasttwo-hybridscreeningidentifiedelongationfactoreEF1A2interactingpartnerthoughtoncogenecancersinteractedD2250-327aadomainEctopicdecreasedinhibitedFurthermoresuppressionsynthesisexvivoverifiedreporterMicroinjectioncytoplasmXenopusembryossuppressedtranslationwhereascombinationmorpholino-eEF1A2resultedreductiontranslationalconcludesubsequentdownregulationmechanismexplainingTumorinhibitsdownregulatingdirectAnti-proliferativeOvarianTranslationalp16INK4a

Similar Articles

Cited By