Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations.

Dilraj Lama, Vivek Modi, Ramasubbu Sankararamakrishnan
Author Information
  1. Dilraj Lama: Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India.

Abstract

Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME) scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL.

References

  1. Protein Eng. 2000 Apr;13(4):227-38 [PMID: 10810153]
  2. Biochemistry. 1995 Jul 11;34(27):8576-88 [PMID: 7612599]
  3. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  4. Proteins. 2012 Jul;80(7):1847-65 [PMID: 22488640]
  5. Proteins. 2011 Jul;79(7):2097-108 [PMID: 21538545]
  6. J Med Chem. 2010 Mar 25;53(6):2577-88 [PMID: 20192224]
  7. Proteins. 2008 Nov 1;73(2):492-514 [PMID: 18452209]
  8. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  9. Mol Cell. 2005 Feb 4;17(3):393-403 [PMID: 15694340]
  10. ACS Med Chem Lett. 2011 Jan 13;2(4):280-4 [PMID: 24900309]
  11. J Chem Theory Comput. 2008 Mar;4(3):435-47 [PMID: 26620784]
  12. J Biol Chem. 1997 Apr 25;272(17):11350-5 [PMID: 9111042]
  13. Immunity. 2003 Sep;19(3):341-52 [PMID: 14499110]
  14. J Chem Inf Model. 2010 May 24;50(5):906-23 [PMID: 20392095]
  15. J Biol Chem. 2011 Mar 18;286(11):9382-92 [PMID: 21148306]
  16. Biochemistry. 2010 Mar 23;49(11):2574-84 [PMID: 20141168]
  17. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  18. J Biomol Struct Dyn. 2013;31(1):65-77 [PMID: 22803956]
  19. Biophys Chem. 1999 Apr 5;78(1-2):69-88 [PMID: 10343384]
  20. Science. 1997 Feb 14;275(5302):983-6 [PMID: 9020082]
  21. Mol Cancer Ther. 2005 Mar;4(3):451-6 [PMID: 15767554]
  22. Biophys J. 2002 Nov;83(5):2393-407 [PMID: 12414676]
  23. Protein Sci. 2000 Dec;9(12):2528-34 [PMID: 11206074]
  24. J Comput Aided Mol Des. 2011 May;25(5):413-26 [PMID: 21523491]
  25. Proteins. 2012 Jun;80(6):1633-46 [PMID: 22447650]
  26. Structure. 2008 May;16(5):818-29 [PMID: 18462686]
  27. Mol Cell. 2010 Feb 12;37(3):299-310 [PMID: 20159550]
  28. Expert Rev Mol Med. 2010 Sep 08;12:e28 [PMID: 20822554]
  29. Biochim Biophys Acta. 2004 Mar 1;1644(2-3):83-94 [PMID: 14996493]
  30. J Biol Chem. 2004 Jan 16;279(3):2159-65 [PMID: 14534311]
  31. J Phys Chem B. 1998 Apr 30;102(18):3586-616 [PMID: 24889800]
  32. Chembiochem. 2011 Sep 5;12(13):2025-32 [PMID: 21744457]
  33. Proteins. 2011 Jun;79(6):1830-40 [PMID: 21465560]
  34. EMBO Rep. 2007 Jun;8(6):563-8 [PMID: 17468738]
  35. J Biol Chem. 2009 Oct 30;284(44):30508-17 [PMID: 19726685]
  36. Biochemistry. 2002 Jul 30;41(30):9485-95 [PMID: 12135371]
  37. Nature. 2005 Nov 3;438(7064):117-21 [PMID: 16267559]
  38. Cancer Cell. 2006 May;9(5):351-65 [PMID: 16697956]
  39. Int J Cancer. 2000 Aug 15;87(4):582-90 [PMID: 10918201]
  40. Ann Surg. 1998 Dec;228(6):780-7 [PMID: 9860477]
  41. Biochem Biophys Res Commun. 2005 Jul 29;333(2):336-43 [PMID: 15922292]
  42. Angew Chem Int Ed Engl. 2003 Feb 3;42(5):535-9 [PMID: 12569483]
  43. Mol Cell. 2008 May 9;30(3):369-80 [PMID: 18471982]
  44. Biochemistry. 2012 Jan 17;51(2):715-23 [PMID: 22206343]
  45. Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5 [PMID: 22102590]
  46. Cell Death Differ. 2012 Apr;19(4):661-70 [PMID: 22015607]
  47. Eur J Biochem. 1997 Oct 1;249(1):85-91 [PMID: 9363757]
  48. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3012-7 [PMID: 11248023]
  49. J Biol Chem. 2010 May 14;285(20):15016-15026 [PMID: 20223826]
  50. EMBO J. 2003 Apr 1;22(7):1497-507 [PMID: 12660157]
  51. J Chem Theory Comput. 2009 Aug 11;5(8):1959-67 [PMID: 26613139]
  52. Int J Cancer. 2000 May 15;86(4):570-6 [PMID: 10797273]
  53. J Comput Chem. 2010 Jan 30;31(2):266-77 [PMID: 19475632]
  54. Cancer Res. 2000 Nov 1;60(21):6052-60 [PMID: 11085527]
  55. J Chem Theory Comput. 2010 Nov 9;6(11):3569-79 [PMID: 26617103]
  56. J Biol Chem. 1999 Jan 22;274(4):2225-33 [PMID: 9890985]
  57. J Chem Theory Comput. 2009 Oct 13;5(10):2798-808 [PMID: 26631792]
  58. J Chem Theory Comput. 2006 Mar;2(2):246-50 [PMID: 26626511]
  59. J Biol Chem. 2005 Feb 11;280(6):4738-44 [PMID: 15550399]
  60. Eur J Med Chem. 2010 Nov;45(11):4774-82 [PMID: 20728251]
  61. Org Biomol Chem. 2012 Apr 21;10(15):2928-33 [PMID: 22395339]
  62. Curr Med Chem. 2012;19(12):1804-20 [PMID: 22414090]
  63. J Biomol Struct Dyn. 2005 Oct;23(2):135-42 [PMID: 16060687]
  64. J Comput Chem. 2007 Apr 30;28(6):1017-30 [PMID: 17269123]
  65. J Chem Inf Model. 2011 Jun 27;51(6):1249-58 [PMID: 21528891]
  66. Nature. 1995 Apr 27;374(6525):811-3 [PMID: 7723826]
  67. Mol Pharmacol. 2011 Jun;79(6):997-1004 [PMID: 21393385]
  68. Blood. 1997 Aug 1;90(3):1208-16 [PMID: 9242554]
  69. J Neuropathol Exp Neurol. 2001 Feb;60(2):147-60 [PMID: 11273003]
  70. Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit-5.6 [PMID: 18428767]
  71. PLoS Biol. 2008 Jun 10;6(6):e147 [PMID: 18547146]

MeSH Term

Apoptosis
BH3 Interacting Domain Death Agonist Protein
Hydrophobic and Hydrophilic Interactions
Models, Molecular
Protein Binding
Protein Stability
Protein Structure, Secondary
Solvents
bcl-X Protein

Chemicals

BH3 Interacting Domain Death Agonist Protein
Solvents
bcl-X Protein

Word Cloud

Created with Highcharts 10.0.0Bcl-XLhydrophobicH2BH3groovesimulationshelixstableBcl-2importantsolvent-exposedPMEdiverseligandsproteinsinvolveddomainhelicalbindingtwin-rangecut-offinteractionsfourunwindingcanabilitybindresiduesloopLBmemberfamilyregulationintrinsicpathwayapoptosisoverexpressionmanyhumancancersmakestargetanti-cancerdrugsinteractsseveralpro-apoptoticpartnersbundleproteinpronouncedactsregiondomainsEightindependentmoleculardynamicsapo/holoformscarriedinvestigatebehaviorusedeitherparticlemeshEwaldschemetreatlong-rangeDestabilizationdomain-containingobservedmajorhelicesremainedrelatedlosscharacteralsolinkedformationhomo-hetero-dimersSeveralexperimentalstudiessuggestedexposurecrucialeventformdimersThusseemsfunctionallyhoweverrevealedpossibleunfoldingmightoccurlongertimescalesHydrophobicamongsolventaccessiblesurfaceareasbulkysignificantlyburiedconnectingsubsequentobservationshelpunderstandpatchremainsstatesuggestdestabilizationconformationalheterogeneityfactorsBehavioranti-apoptoticprotein:cluesMD

Similar Articles

Cited By