Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids.

Christoph Vorburger, Pravin Ganesanandamoorthy, Marek Kwiatkowski
Author Information
  1. Christoph Vorburger: Institute of Integrative Biology, ETH Zürich Universitätstrasse 16, 8092, Zürich, Switzerland ; EAWAG, Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133, 8600, Dübendorf, Switzerland.

Abstract

Host defenses against parasites do not come for free. The evolution of increased resistance can be constrained by constitutive costs associated with possessing defense mechanisms, and by induced costs of deploying them. These two types of costs are typically considered with respect to resistance as a genetically determined trait, but they may also apply to resistance provided by 'helpers' such as bacterial endosymbionts. We investigated the costs of symbiont-conferred resistance in the black bean aphid, Aphis fabae (Scopoli), which receives strong protection against the parasitoid Lysiphlebus fabarum from the defensive endosymbiont Hamiltonella defensa. Aphids infected with H. defensa were almost ten times more resistant to L. fabarum than genetically identical aphids without this symbiont, but in the absence of parasitoids, they had strongly reduced lifespans, resulting in lower lifetime reproduction. This is evidence for a substantial constitutive cost of harboring H. defensa. We did not observe any induced cost of symbiont-conferred resistance. On the contrary, symbiont-protected aphids that resisted a parasitoid attack enjoyed increased longevity and lifetime reproduction compared with unattacked controls, whereas unprotected aphids suffered a reduction of longevity and reproduction after resisting an attack. This surprising result suggests that by focusing exclusively on the protection, we might underestimate the selective advantage of infection with H. defensa in the presence of parasitoids.

Keywords

References

  1. PLoS One. 2011;6(7):e21831 [PMID: 21818272]
  2. Annu Rev Entomol. 2004;49:299-330 [PMID: 14651466]
  3. Proc Biol Sci. 2003 Aug 22;270(1525):1703-12 [PMID: 12964998]
  4. Nature. 1997 Sep 18;389(6648):278-80 [PMID: 9305840]
  5. Evolution. 1995 Jun;49(3):427-438 [PMID: 28565087]
  6. Evolution. 2012 Feb;66(2):375-90 [PMID: 22276535]
  7. Curr Biol. 2011 Mar 8;21(5):433-7 [PMID: 21353557]
  8. Evolution. 2009 Jun;63(6):1439-50 [PMID: 19228189]
  9. Evolution. 1999 Aug;53(4):1189-1199 [PMID: 28565514]
  10. Curr Microbiol. 1997 Apr;34(4):220-5 [PMID: 9058541]
  11. Proc Biol Sci. 2005 Sep 7;272(1574):1803-8 [PMID: 16096092]
  12. Proc Biol Sci. 2008 Feb 7;275(1632):293-9 [PMID: 18029301]
  13. PLoS Biol. 2008 Dec 23;6(12):e2 [PMID: 19222304]
  14. Proc Biol Sci. 2006 May 22;273(1591):1273-80 [PMID: 16720402]
  15. Science. 2010 Jul 9;329(5988):212-5 [PMID: 20616278]
  16. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12795-800 [PMID: 16120675]
  17. Annu Rev Entomol. 2005;50:529-51 [PMID: 15471530]
  18. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1803-7 [PMID: 12563031]
  19. J Evol Biol. 2011 Apr;24(4):741-50 [PMID: 21261770]
  20. Science. 2000 Nov 10;290(5494):1166-8 [PMID: 11073456]
  21. BMC Biol. 2012 Feb 24;10:11 [PMID: 22364271]
  22. Parasitology. 2002;125 Suppl:S71-82 [PMID: 12622330]
  23. Science. 2008 Oct 31;322(5902):702 [PMID: 18974344]
  24. Proc Biol Sci. 2008 May 7;275(1638):1089-94 [PMID: 18270153]
  25. J Evol Biol. 2010 Mar;23(3):578-85 [PMID: 20074305]
  26. Proc Biol Sci. 2003 Feb 22;270(1513):357-66 [PMID: 12639314]
  27. J Insect Physiol. 2006 Feb;52(2):146-57 [PMID: 16307754]
  28. Trends Ecol Evol. 1996 Aug;11(8):317-21 [PMID: 21237861]
  29. J Evol Biol. 2003 Sep;16(5):1038-44 [PMID: 14635919]
  30. Am Nat. 2012 May;179(5):595-605 [PMID: 22504542]
  31. J Evol Biol. 2011 Jul;24(7):1611-7 [PMID: 21569156]
  32. J Insect Physiol. 2001 Apr;47(4-5):339-48 [PMID: 11166298]
  33. Science. 2009 Aug 21;325(5943):992-4 [PMID: 19696350]
  34. Biol Lett. 2011 Oct 23;7(5):743-6 [PMID: 21490007]
  35. J Evol Biol. 2012 Nov;25(11):2369-75 [PMID: 22998667]

Word Cloud

Created with Highcharts 10.0.0resistancecostsdefensaaphidsconstitutiveinducedsymbiont-conferredparasitoidfabarumHparasitoidsreproductionincreasedgeneticallyAphisfabaeprotectionLysiphlebusHamiltonellalifetimecostattacklongevityHostdefensesparasitescomefreeevolutioncanconstrainedassociatedpossessingdefensemechanismsdeployingtwotypestypicallyconsideredrespectdeterminedtraitmayalsoapplyprovided'helpers'bacterialendosymbiontsinvestigatedblackbeanaphidScopolireceivesstrongdefensiveendosymbiontAphidsinfectedalmosttentimesresistantLidenticalwithoutsymbiontabsencestronglyreducedlifespansresultinglowerevidencesubstantialharboringobservecontrarysymbiont-protectedresistedenjoyedcomparedunattackedcontrolswhereasunprotectedsufferedreductionresistingsurprisingresultsuggestsfocusingexclusivelymightunderestimateselectiveadvantageinfectionpresenceComparingsymbiosis

Similar Articles

Cited By