Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages.

Michaele Josten, Marion Reif, Christiane Szekat, Nahed Al-Sabti, Terry Roemer, Katrin Sparbier, Markus Kostrzewa, Holger Rohde, Hans-Georg Sahl, Gabriele Bierbaum
Author Information
  1. Michaele Josten: University of Bonn, Institute of Medical Microbiology, Immunology, and Parasitology, Bonn, Germany.

Abstract

Nosocomial infections involving epidemic methicillin-resistant Staphylococcus aureus (MRSA) strains are a serious problem in many countries. In order to analyze outbreaks, the infectious isolates have to be typed; however, most molecular methods are expensive or labor-intensive. Here, we evaluated matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) of cell extracts for the molecular characterization of S. aureus strains. The peak patterns of 401 MRSA and methicillin-susceptible S. aureus (MSSA) strains, including clinical and laboratory strains, were analyzed. Database searches indicated the peptides that were represented by the corresponding peaks in the spectra. The identities of the peptides were confirmed by the sequencing of mutants, the expression of antisense RNA fragments that resulted in the knockdown of the peptide of interest and the concomitant loss of the signal, or tandem MALDI-TOF MS (MALDI-TOF/TOF MS). It was shown that the signals derive mainly from stress proteins and ribosomal proteins. Peak shifts that differentiate the main S. aureus clonal complexes CC5, CC22, CC8, CC45, CC30, and CC1 correlate to point mutations in the respective genes. Retrospective typing of an MRSA outbreak showed that it is possible to differentiate unrelated MSSA, MRSA, and borderline resistant S. aureus (BORSA) strains isolated from health care workers. In conclusion, this method allows for the detection of the epidemic lineages of S. aureus during species identification by MALDI-TOF MS analysis.

References

  1. J Bacteriol. 2004 Jul;186(13):4085-99 [PMID: 15205410]
  2. Electrophoresis. 2012 Aug;33(15):2355-64 [PMID: 22887156]
  3. PLoS One. 2012;7(7):e40660 [PMID: 22792394]
  4. J Proteome Res. 2008 Jun;7(6):2270-9 [PMID: 18412385]
  5. J Med Microbiol. 2000 Mar;49(3):295-300 [PMID: 10707951]
  6. Anal Chem. 2002 Nov 1;74(21):5487-91 [PMID: 12433077]
  7. J Clin Microbiol. 2003 Dec;41(12):5442-8 [PMID: 14662923]
  8. J Bacteriol. 1987 Feb;169(2):751-7 [PMID: 3027045]
  9. Mol Gen Genet. 1989 Nov;219(3):480-5 [PMID: 2622452]
  10. J Bacteriol. 2006 Sep;188(17):6070-80 [PMID: 16923874]
  11. Mol Microbiol. 2002 Mar;43(6):1387-400 [PMID: 11952893]
  12. FEMS Microbiol Lett. 2006 Feb;255(2):233-9 [PMID: 16448500]
  13. J Clin Microbiol. 2007 Jun;45(6):1830-7 [PMID: 17428929]
  14. Proteomics. 2002 Jun;2(6):747-53 [PMID: 12112858]
  15. J Microbiol Methods. 2002 Feb;48(2-3):117-26 [PMID: 11777562]
  16. Anal Chem. 2001 Feb 15;73(4):746-50 [PMID: 11248887]
  17. Proteomics. 2011 Oct;11(20):3992-4006 [PMID: 21761558]
  18. J Med Microbiol. 2012 May;61(Pt 5):640-644 [PMID: 22322338]
  19. Int J Med Microbiol. 2011 Jan;301(1):64-8 [PMID: 20728405]
  20. Anal Chem. 1999 Aug 1;71(15):3226-30 [PMID: 10450164]
  21. J Biol Chem. 2012 Apr 20;287(17):13889-98 [PMID: 22371493]
  22. Mol Cell. 2008 Oct 10;32(1):150-8 [PMID: 18851841]
  23. FEMS Microbiol Lett. 1990 Jan 1;54(1-3):203-7 [PMID: 2182373]
  24. Lancet Infect Dis. 2011 Aug;11(8):595-603 [PMID: 21641281]
  25. J Bacteriol. 2001 Mar;183(6):1843-52 [PMID: 11222581]
  26. Int J Antimicrob Agents. 2009 Nov;34(5):467-70 [PMID: 19409760]
  27. Eur J Clin Microbiol Infect Dis. 2011 Jul;30(7):909-13 [PMID: 21298461]
  28. J Infect Dis. 2012 Mar 1;205(5):798-806 [PMID: 22301683]
  29. Anal Chem. 2012 Jul 3;84(13):5685-92 [PMID: 22762263]
  30. Int J Med Microbiol. 2011 Jan;301(1):58-63 [PMID: 20705506]
  31. Antimicrob Agents Chemother. 2003 Dec;47(12):3926-34 [PMID: 14638503]
  32. Infect Genet Evol. 2009 Jul;9(4):507-13 [PMID: 19460316]
  33. J Bacteriol. 2002 Oct;184(19):5457-67 [PMID: 12218034]

MeSH Term

Bacterial Proteins
Bacterial Typing Techniques
Humans
Mutant Proteins
Mutation
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Staphylococcus aureus

Chemicals

Bacterial Proteins
Mutant Proteins

Word Cloud

Created with Highcharts 10.0.0aureusstrainsSMRSAMSMALDI-TOFepidemicStaphylococcusmolecularmatrix-assistedlaserdesorptionionization-timeflightmassMSSApeptidesproteinsdifferentiatemainclonalmutationslineagesNosocomialinfectionsinvolvingmethicillin-resistantseriousproblemmanycountriesorderanalyzeoutbreaksinfectiousisolatestypedhowevermethodsexpensivelabor-intensiveevaluatedspectrometrycellextractscharacterizationpeakpatterns401methicillin-susceptibleincludingclinicallaboratoryanalyzedDatabasesearchesindicatedrepresentedcorrespondingpeaksspectraidentitiesconfirmedsequencingmutantsexpressionantisenseRNAfragmentsresultedknockdownpeptideinterestconcomitantlosssignaltandemMALDI-TOF/TOFshownsignalsderivemainlystressribosomalPeakshiftscomplexesCC5CC22CC8CC45CC30CC1correlatepointrespectivegenesRetrospectivetypingoutbreakshowedpossibleunrelatedborderlineresistantBORSAisolatedhealthcareworkersconclusionmethodallowsdetectionspeciesidentificationanalysisAnalysisspectrumidentifiesallowdifferentiation

Similar Articles

Cited By