Nonparametric Bayes Conditional Distribution Modeling With Variable Selection.

Yeonseung Chung, David B Dunson
Author Information
  1. Yeonseung Chung: Department of Biostatistics, Harvard School of Public Health, 655 Huntington Ave. SPH2, 4th Floor, Boston, MA 02115 ( ychung@hsph.harvard.edu ).

Abstract

This article considers a methodology for flexibly characterizing the relationship between a response and multiple predictors. Goals are (1) to estimate the conditional response distribution addressing the distributional changes across the predictor space, and (2) to identify important predictors for the response distribution change both within local regions and globally. We first introduce the probit stick-breaking process (PSBP) as a prior for an uncountable collection of predictor-dependent random distributions and propose a PSBP mixture (PSBPM) of normal regressions for modeling the conditional distributions. A global variable selection structure is incorporated to discard unimportant predictors, while allowing estimation of posterior inclusion probabilities. Local variable selection is conducted relying on the conditional distribution estimates at different predictor points. An efficient stochastic search sampling algorithm is proposed for posterior computation. The methods are illustrated through simulation and applied to an epidemiologic study.

Keywords

References

  1. Biometrics. 2008 Jun;64(2):413-23 [PMID: 17764484]
  2. Ann Epidemiol. 1995 Nov;5(6):464-72 [PMID: 8680609]
  3. Epidemiology. 2007 Mar;18(2):199-207 [PMID: 17272963]
  4. Biometrika. 2007 Aug 1;94(3):553-568 [PMID: 19343105]
  5. Biometrika. 2008;95(2):307-323 [PMID: 18800173]
  6. Biometrika. 2008 Dec;95(4):859-874 [PMID: 32148335]
  7. Ann Inst Stat Math. 2011 Feb 1;63(1):59-80 [PMID: 23645935]
  8. Arterioscler Thromb Vasc Biol. 1997 Jan;17(1):64-71 [PMID: 9012639]

Grants

  1. R01 ES017240/NIEHS NIH HHS
  2. R01 ES017436/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0distributionresponsepredictorsconditionalvariableselectionpredictorstick-breakingprocessPSBPdistributionsestimationposteriorsearchConditionalarticleconsidersmethodologyflexiblycharacterizingrelationshipmultipleGoals1estimateaddressingdistributionalchangesacrossspace2identifyimportantchangewithinlocalregionsgloballyfirstintroduceprobitprioruncountablecollectionpredictor-dependentrandomproposemixturePSBPMnormalregressionsmodelingglobalstructureincorporateddiscardunimportantallowinginclusionprobabilitiesLocalconductedrelyingestimatesdifferentpointsefficientstochasticsamplingalgorithmproposedcomputationmethodsillustratedsimulationappliedepidemiologicstudyNonparametricBayesDistributionModelingVariableSelectionHypothesistestingKernelMixtureexpertsStochastic

Similar Articles

Cited By