Regulating the many to benefit the few: role of weak small RNA targets.

Daniel Jost, Andrzej Nowojewski, Erel Levine
Author Information
  1. Daniel Jost: Department of Physics and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA.

Abstract

Small regulatory RNAs are central players in the regulation of many cellular processes across all kingdoms of life. Experiments in mouse and human have shown that a typical small RNA may regulate the expression of many different genes, suggesting that small RNAs act as global regulators. It is noted though that most targets respond only weakly to the presence of the small RNA. At the same time, evidence in bacteria and animals suggest that the phenotypes associated with small RNA mutants are only due to a few of their targets. Here we assume that targets regulated by a small RNA to control function is in fact small, and propose that the role of the many other weak targets is to confer robustness to the regulation of these few principal targets. Through mathematical modeling we show that auxiliary targets may significantly buffer both number and kinetic fluctuations of the principal targets, with only minor slowdown in the kinetics of response. Analysis of genomic data suggests that auxiliary targets experience a nonspecific evolutionary pressure, playing a role at the system level. Our work is of importance for studies on small RNA functions, and impacts on the understanding of small RNA evolution.

References

  1. Trends Genet. 2005 Jul;21(7):399-404 [PMID: 15913835]
  2. Genome Res. 2009 Jan;19(1):92-105 [PMID: 18955434]
  3. Mol Cell. 2007 Jul 6;27(1):91-105 [PMID: 17612493]
  4. BMB Rep. 2011 Jan;44(1):11-21 [PMID: 21266101]
  5. Biophys J. 1977 Nov;20(2):193-219 [PMID: 911982]
  6. BMC Mol Biol. 2010 Feb 18;11:17 [PMID: 20167073]
  7. Mol Cell. 2010 Sep 10;39(5):761-72 [PMID: 20832727]
  8. Nat Rev Genet. 2010 Sep;11(9):597-610 [PMID: 20661255]
  9. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1876-81 [PMID: 20133835]
  10. Cell. 2005 Jan 14;120(1):15-20 [PMID: 15652477]
  11. J Biomed Biotechnol. 2009;2009:594738 [PMID: 19759918]
  12. Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3 [PMID: 19854939]
  13. Phys Biol. 2007 Oct 02;4(3):164-71 [PMID: 17928655]
  14. Curr Biol. 2006 May 23;16(10):1018-25 [PMID: 16713960]
  15. Nat Rev Genet. 2004 May;5(5):396-400 [PMID: 15143321]
  16. Nat Genet. 2011 Aug 21;43(9):854-9 [PMID: 21857679]
  17. Mol Neurobiol. 2012 Feb;45(1):99-108 [PMID: 22167484]
  18. Oncogene. 2011 Jun 30;30(26):2975-85 [PMID: 21317927]
  19. Nature. 2000 Feb 24;403(6772):901-6 [PMID: 10706289]
  20. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12265-70 [PMID: 18719112]
  21. Genes Dev. 2009 Nov 15;23(22):2592-7 [PMID: 19875476]
  22. Nat Rev Genet. 2008 Nov;9(11):831-42 [PMID: 18852696]
  23. Mol Syst Biol. 2008;4:221 [PMID: 18854820]
  24. PLoS Biol. 2007 Sep;5(9):e229 [PMID: 17713988]
  25. Nat Rev Genet. 2009 Feb;10(2):94-108 [PMID: 19148191]
  26. Mol Syst Biol. 2007;3:138 [PMID: 17893699]
  27. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9 [PMID: 11438714]
  28. Nature. 2010 Feb 4;463(7281):621-6 [PMID: 20054295]
  29. Curr Biol. 2009 May 26;19(10):870-3 [PMID: 19375315]
  30. Genome Res. 2001 Apr;11(4):540-6 [PMID: 11282969]
  31. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):446-51 [PMID: 21183719]
  32. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10655-9 [PMID: 19541626]
  33. Curr Biol. 2010 Oct 12;20(19):R858-61 [PMID: 20937476]
  34. Nat Genet. 2011 Jun;43(6):554-60 [PMID: 21532574]
  35. Nature. 2008 Sep 4;455(7209):58-63 [PMID: 18668040]
  36. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  37. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4016-21 [PMID: 20160109]
  38. PLoS Comput Biol. 2007 Nov;3(11):e233 [PMID: 18052540]
  39. Nat Rev Genet. 2010 Aug;11(8):530-1 [PMID: 20628348]
  40. Nature. 2004 Jan 29;427(6973):415-8 [PMID: 14749823]
  41. Nat Rev Genet. 2007 Feb;8(2):93-103 [PMID: 17230196]
  42. Cell. 2009 Dec 11;139(6):1096-108 [PMID: 20005803]
  43. Nucleic Acids Res. 2011 Apr;39(7):2869-79 [PMID: 21131276]
  44. J Mol Biol. 2011 Feb 11;406(1):195-204 [PMID: 21145897]
  45. Nat Struct Mol Biol. 2010 Oct;17(10):1169-74 [PMID: 20924405]
  46. J Bacteriol. 2005 Oct;187(20):6962-71 [PMID: 16199566]
  47. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041905 [PMID: 20481751]
  48. Nat Cell Biol. 2010 Apr;12(4):372-9 [PMID: 20190740]
  49. Nature. 2008 Sep 4;455(7209):64-71 [PMID: 18668037]
  50. Mol Cell. 2000 Apr;5(4):659-69 [PMID: 10882102]
  51. Biophys J. 2003 Jan;84(1):154-70 [PMID: 12524272]
  52. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10040-5 [PMID: 16006514]

MeSH Term

Animals
Bacteria
Evolution, Molecular
Genetic Loci
Humans
Kinetics
Models, Biological
RNA Processing, Post-Transcriptional
RNA, Messenger
RNA, Small Untranslated
Stochastic Processes

Chemicals

RNA, Messenger
RNA, Small Untranslated

Word Cloud

Created with Highcharts 10.0.0smalltargetsRNAmanyroleRNAsregulationmayweakprincipalauxiliarySmallregulatorycentralplayerscellularprocessesacrosskingdomslifeExperimentsmousehumanshowntypicalregulateexpressiondifferentgenessuggestingactglobalregulatorsnotedthoughrespondweaklypresencetimeevidencebacteriaanimalssuggestphenotypesassociatedmutantsdueassumeregulatedcontrolfunctionfactproposeconferrobustnessmathematicalmodelingshowsignificantlybuffernumberkineticfluctuationsminorslowdownkineticsresponseAnalysisgenomicdatasuggestsexperiencenonspecificevolutionarypressureplayingsystemlevelworkimportancestudiesfunctionsimpactsunderstandingevolutionRegulatingbenefitfew:

Similar Articles

Cited By