p90 RSK2 mediates antianoikis signals by both transcription-dependent and -independent mechanisms.

Lingtao Jin, Dan Li, Jong Seok Lee, Shannon Elf, Gina N Alesi, Jun Fan, Hee-Bum Kang, Dongsheng Wang, Haian Fu, Jack Taunton, Titus J Boggon, Meghan Tucker, Ting-Lei Gu, Zhuo G Chen, Dong M Shin, Fadlo R Khuri, Sumin Kang
Author Information
  1. Lingtao Jin: Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.

Abstract

How invasive and metastatic tumor cells evade anoikis induction remains unclear. We found that knockdown of RSK2 sensitizes diverse cancer cells to anoikis induction, which is mediated through phosphorylation targets including apoptosis signal-regulating kinase 1 (ASK1) and cyclic AMP (cAMP) response element-binding protein (CREB). We provide evidence to show that RSK2 inhibits ASK1 by phosphorylating S83, T1109, and T1326 through a novel mechanism in which phospho-T1109/T1326 inhibits ATP binding to ASK1, while phospho-S83 attenuates ASK1 substrate MKK6 binding. Moreover, the RSK2→CREB signaling pathway provides antianoikis protection by regulating gene expression of protein effectors that are involved in cell death regulation, including the antiapoptotic factor protein tyrosine kinase 6 (PTK6) and the proapoptotic factor inhibitor-of-growth protein 3 (ING3). PTK6 overexpression or ING3 knockdown in addition to ASK1 knockdown further rescued the increased sensitivity to anoikis induction in RSK2 knockdown cells. These data together suggest that RSK2 functions as a signal integrator to provide antianoikis protection to cancer cells in both transcription-independent and -dependent manners, in part by signaling through ASK1 and CREB, and contributes to cancer cell invasion and tumor metastasis.

References

  1. Mol Cell Biol. 2001 Feb;21(3):893-901 [PMID: 11154276]
  2. Int J Cancer. 2008 Oct 1;123(7):1483-90 [PMID: 18636562]
  3. Oncogene. 1997 Oct 23;15(17):2069-75 [PMID: 9366524]
  4. J Biol Chem. 1998 Sep 18;273(38):24884-90 [PMID: 9733794]
  5. Mol Cell Biol. 1996 Mar;16(3):1212-9 [PMID: 8622665]
  6. Mol Cell. 2001 Oct;8(4):807-16 [PMID: 11684016]
  7. Science. 2005 May 27;308(5726):1318-21 [PMID: 15919995]
  8. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 [PMID: 11134512]
  9. PLoS One. 2010 Jul 23;5(7):e11729 [PMID: 20668531]
  10. Oncogene. 2009 Dec 3;28(48):4261-71 [PMID: 19749799]
  11. Oncogene. 2002 Jun 27;21(28):4462-70 [PMID: 12080476]
  12. J Biol Chem. 2006 Apr 28;281(17):11887-93 [PMID: 16520380]
  13. Mol Cell Endocrinol. 1999 May 25;151(1-2):65-77 [PMID: 10411321]
  14. J Biol Chem. 2008 Feb 22;283(8):4652-7 [PMID: 18156174]
  15. Cancer Cell. 2007 Sep;12(3):201-14 [PMID: 17785202]
  16. Mol Cell. 2009 Jan 16;33(1):109-16 [PMID: 19150432]
  17. Virchows Arch. 2009 Aug;455(2):117-23 [PMID: 19621240]
  18. Curr Biol. 2000 Feb 10;10(3):127-35 [PMID: 10679322]
  19. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5889-92 [PMID: 8392180]
  20. Mol Cell Biochem. 2000 Sep;212(1-2):19-28 [PMID: 11108132]
  21. Science. 1996 Aug 16;273(5277):959-63 [PMID: 8688081]
  22. Oncogene. 2000 May 18;19(22):2721-30 [PMID: 10851072]
  23. Clin Cancer Res. 2007 Jul 15;13(14):4111-6 [PMID: 17634537]
  24. Nat Rev Cancer. 2003 Jun;3(6):453-8 [PMID: 12778135]
  25. Pigment Cell Melanoma Res. 2009 Feb;22(1):14-29 [PMID: 19040501]
  26. Cell Mol Life Sci. 2004 Oct;61(19-20):2597-613 [PMID: 15526165]
  27. Mol Cell Biol. 2009 Apr;29(8):2105-17 [PMID: 19223461]
  28. Cancer Res. 2005 Feb 1;65(3):1027-34 [PMID: 15705904]
  29. EMBO J. 1998 Sep 1;17(17):5037-47 [PMID: 9724639]
  30. Oncogene. 2007 Aug 2;26(35):5070-7 [PMID: 17310988]
  31. J Biol Chem. 2003 Mar 21;278(12):10588-93 [PMID: 12529330]
  32. Cancer Biol Ther. 2006 Sep;5(9):1136-41 [PMID: 16855388]
  33. J Clin Invest. 2010 Apr;120(4):1165-77 [PMID: 20234090]
  34. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12463-8 [PMID: 18719096]
  35. Oncogene. 2005 Jun 2;24(24):3954-63 [PMID: 15782121]
  36. Cell. 2006 Nov 17;127(4):679-95 [PMID: 17110329]
  37. Mol Cell. 2011 Dec 23;44(6):864-77 [PMID: 22195962]

Grants

  1. R01 GM071434/NIGMS NIH HHS
  2. P50CA128613/NCI NIH HHS
  3. GM071434/NIGMS NIH HHS
  4. R01 CA175316/NCI NIH HHS
  5. P50 CA128613/NCI NIH HHS

MeSH Term

Adenosine Triphosphate
Anoikis
Cell Line, Tumor
Cyclic AMP Response Element-Binding Protein
Gene Expression Regulation
Genes, Tumor Suppressor
Homeodomain Proteins
Humans
MAP Kinase Kinase 6
MAP Kinase Kinase Kinase 5
Neoplasm Proteins
Phosphorylation
Protein-Tyrosine Kinases
Ribosomal Protein S6 Kinases, 90-kDa
Signal Transduction
Transcription, Genetic
Tumor Suppressor Proteins

Chemicals

CREB1 protein, human
Cyclic AMP Response Element-Binding Protein
Homeodomain Proteins
ING3 protein, human
Neoplasm Proteins
Tumor Suppressor Proteins
Adenosine Triphosphate
Protein-Tyrosine Kinases
PTK6 protein, human
Ribosomal Protein S6 Kinases, 90-kDa
ribosomal protein S6 kinase, 90kDa, polypeptide 3
MAP Kinase Kinase Kinase 5
MAP3K5 protein, human
MAP Kinase Kinase 6
MAP2K6 protein, human

Word Cloud

Created with Highcharts 10.0.0ASK1RSK2cellsknockdownproteinanoikisinductioncancerantianoikistumorincludingkinaseCREBprovideinhibitsbindingsignalingprotectioncellfactorPTK6ING3invasivemetastaticevaderemainsunclearfoundsensitizesdiversemediatedphosphorylationtargetsapoptosissignal-regulating1cyclicAMPcAMPresponseelement-bindingevidenceshowphosphorylatingS83T1109T1326novelmechanismphospho-T1109/T1326ATPphospho-S83attenuatessubstrateMKK6MoreoverRSK2→CREBpathwayprovidesregulatinggeneexpressioneffectorsinvolveddeathregulationantiapoptotictyrosine6proapoptoticinhibitor-of-growth3overexpressionadditionrescuedincreasedsensitivitydatatogethersuggestfunctionssignalintegratortranscription-independent-dependentmannerspartcontributesinvasionmetastasisp90mediatessignalstranscription-dependent-independentmechanisms

Similar Articles

Cited By