Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy.

Muhammad Usman Ashhab, Ahmed Omran, Huimin Kong, Na Gan, Fang He, Jing Peng, Fei Yin
Author Information
  1. Muhammad Usman Ashhab: Department of Pediatrics, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, China.

Abstract

Recently, the role of inflammation has attracted great attention in the pathogenesis of mesial temporal lobe epilepsy (MTLE), and microRNAs start to emerge as promising new players in MTLE pathogenesis. In this study, we investigated the dynamic expression patterns of tumor necrosis factor alpha (TNF-α) and microRNA-155 (miR-155) in the hippocampi of an immature rat model of status epilepticus (SE) and children with MTLE. The expressions of TNF-α and miR-155 were significantly upregulated in the seizure-related acute and chronic stages of MTLE in the immature rat model and also in children with MTLE. Modulation of TNF-α expression, either by stimulation using myeloid-related protein (MRP8) or lipopolysaccharide or inhibition using lenalidomide on astrocytes, leads to similar dynamic changes in miR-155 expression. Our study is the first to focus on the dynamic expression pattern of miR-155 in the immature rat of SE lithium-pilocarpine model and children with MTLE and to detect their relationship at the astrocyte level. TNF-α and miR-155, having similar expression patterns in the three stages of MTLE development, and their relationship at the astrocyte level may suggest a direct interactive relationship during MTLE development. Therefore, modulation of the TNF-α/miR-155 axis may be a novel therapeutic target for the treatment of MTLE.

References

  1. Neurosci Res. 2012 Feb;72(2):172-80 [PMID: 22138615]
  2. J Intern Med. 2011 Oct;270(4):319-26 [PMID: 21793950]
  3. Neurotherapeutics. 2010 Oct;7(4):424-38 [PMID: 20880506]
  4. J Neurochem. 2005 Feb;92(3):525-35 [PMID: 15659223]
  5. Neuroscience. 2009 Jun 16;161(1):293-300 [PMID: 19285115]
  6. Epilepsia. 1999 Apr;40(4):445-52 [PMID: 10219270]
  7. Glia. 2011 Dec;59(12):1911-22 [PMID: 22170100]
  8. Immunity. 2010 Oct 29;33(4):607-19 [PMID: 20888269]
  9. J Immunol. 2007 Oct 15;179(8):5082-9 [PMID: 17911593]
  10. Epilepsy Res. 2008 Dec;82(2-3):171-6 [PMID: 18783922]
  11. Epilepsia. 2002;43 Suppl 5:30-5 [PMID: 12121291]
  12. J Neurosci. 2010 Jun 2;30(22):7484-94 [PMID: 20519523]
  13. Int J Neurosci. 2011 Oct;121(10):575-88 [PMID: 21812737]
  14. Neurosci Lett. 2011 Jun 27;497(3):223-30 [PMID: 21362451]
  15. Neurobiol Dis. 2008 Jan;29(1):142-60 [PMID: 17931873]
  16. Neuromolecular Med. 2012 Dec;14(4):244-61 [PMID: 22810393]
  17. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2735-40 [PMID: 19193853]
  18. J Immunol. 1997 Jan 1;158(1):438-45 [PMID: 8977220]
  19. Nat Rev Mol Cell Biol. 2005 May;6(5):376-85 [PMID: 15852042]
  20. Epilepsia. 2012 Jul;53(7):1215-24 [PMID: 22708826]
  21. Ann Neurol. 2005 Jun;57(6):804-12 [PMID: 15852477]
  22. J Comp Neurol. 1997 Feb 24;378(4):482-92 [PMID: 9034905]
  23. J Neurosci. 2008 Jul 2;28(27):6904-13 [PMID: 18596165]
  24. Neurosci Lett. 2012 Nov 7;529(2):133-8 [PMID: 22981977]
  25. J Cereb Blood Flow Metab. 2010 Jan;30(1):92-101 [PMID: 19724284]
  26. Epilepsia. 2005;46 Suppl 5:113-7 [PMID: 15987264]
  27. Nat Med. 2007 Sep;13(9):1042-9 [PMID: 17767165]
  28. Neurosci Res. 2002 Feb;42(2):147-53 [PMID: 11849734]
  29. J Biol Chem. 2011 Jan 14;286(2):1436-44 [PMID: 21062749]
  30. Cell Mol Life Sci. 2012 Sep;69(18):3127-45 [PMID: 22535415]
  31. Neurology. 2009 May 19;72(20):1718-9 [PMID: 19321843]
  32. Cardiol Young. 2013 Oct;23(5):642-55 [PMID: 23443043]
  33. Brain. 2009 Dec;132(Pt 12):3342-52 [PMID: 19952055]
  34. Brain Res. 2011 Nov 18;1424:53-9 [PMID: 22019057]
  35. EMBO Mol Med. 2009 Aug;1(5):288-95 [PMID: 19890474]
  36. Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-94 [PMID: 4110397]
  37. Epilepsia. 2005 Nov;46(11):1724-43 [PMID: 16302852]
  38. J Biol Chem. 2011 Apr 1;286(13):11604-15 [PMID: 21282106]
  39. Acta Neuropathol. 2007 Mar;113(3):235-44 [PMID: 17221203]
  40. J Mol Neurosci. 2013 Jun;50(2):291-7 [PMID: 23315173]
  41. Brain Res Mol Brain Res. 2000 Feb 22;75(2):248-58 [PMID: 10686345]
  42. Eur J Neurosci. 2010 Mar;31(6):1100-7 [PMID: 20214679]

MeSH Term

Adolescent
Animals
Astrocytes
Case-Control Studies
Child
Epilepsy, Temporal Lobe
Female
Hippocampus
Humans
Lenalidomide
Lipopolysaccharides
Lithium Chloride
Male
MicroRNAs
Pilocarpine
Rats
Rats, Sprague-Dawley
Status Epilepticus
Thalidomide
Tumor Necrosis Factor-alpha

Chemicals

Lipopolysaccharides
MIRN155 microRNA, human
MIRN155 microRNA, rat
MicroRNAs
Tumor Necrosis Factor-alpha
Pilocarpine
Thalidomide
Lenalidomide
Lithium Chloride

Word Cloud

Created with Highcharts 10.0.0MTLEexpressionmiR-155TNF-αimmatureratmodelchildrendynamicrelationshippathogenesismesialtemporallobeepilepsystudypatternstumornecrosisfactoralphamicroRNA-155statusepilepticusSEstagesusingsimilarastrocyteleveldevelopmentmayRecentlyroleinflammationattractedgreatattentionmicroRNAsstartemergepromisingnewplayersinvestigatedhippocampiexpressionssignificantlyupregulatedseizure-relatedacutechronicalsoModulationeitherstimulationmyeloid-relatedproteinMRP8lipopolysaccharideinhibitionlenalidomideastrocytesleadschangesfirstfocuspatternlithium-pilocarpinedetectthreesuggestdirectinteractiveThereforemodulationTNF-α/miR-155axisnoveltherapeutictargettreatmentExpressions

Similar Articles

Cited By (56)