A rapid facilitation of acid-sensing ion channels current by corticosterone in cultured hippocampal neurons.

Zhe Xiong, Yan Liu, Lian Hu, BaoMiao Ma, YongXun Ai, ChengLiang Xiong
Author Information
  1. Zhe Xiong: Medical College, Jianghan University, Wuhan, 430056, China.

Abstract

Acid-sensing ion channels (ASIC) play an important role in the central neuronal system and excessive activation of ASICs induces neuronal damage. Recent studies show that ASIC1a, a subunit of ASIC, is involved in stress processes but the mechanisms by which ASIC1a is regulated by corticosterone (CORT), a stress-induced hormone, are as yet unelucidated. In the present study, to explore the effects of CORT on ASIC1a in cultured hippocampal neurons, the whole-cell patch clamp technique was used. We present data showing that extracellular application of 1 and 10 μM CORT increase the inward current when solution of pH 6.0 is applied to the exterior of the cell. Moreover, extracellular application of membrane-impermeable CORT-BSA (1 μM) maintains current elevation induced by the action of ASIC1a. However, intracellular application of CORT (1 μM) did not increase ASIC1a current. Subsequent extracellular application of CORT enhanced the amplitude of ASIC1a current. Also, RU38486 (10 μM), an antagonist of nuclear glucocorticoids receptor, did not block an increase of ASIC1a current induced by CORT. In addition, CORT application further resulted in a significant enhancement of ASIC1a current in the presence of phorbol 12-myristate 13-acetate (0.5 μM) or bryostatin1 (1 μM), which are both protein kinase C (PKC) agonists. On the contrary, after pretreatment with GF109203X (3 μM), an antagonist of PKC, CORT did not elevate ASIC1a current. These data indicate that the rapid increase of ASIC1a current induced by CORT may be caused by the activation of corticosteroid receptors found on the cell membranes of hippocampal neurons and it may involve a PKC-dependent mechanism.

References

  1. J Physiol. 2002 Mar 1;539(Pt 2):485-94 [PMID: 11882680]
  2. PLoS One. 2012;7(4):e34124 [PMID: 22509272]
  3. Behav Brain Res. 2012 Apr 21;230(1):167-74 [PMID: 22327185]
  4. Psychopharmacology (Berl). 2009 Mar;203(1):41-52 [PMID: 18949460]
  5. Biochim Biophys Acta. 2003 Feb 17;1619(3):301-16 [PMID: 12573490]
  6. Brain Res. 2004 Aug 13;1017(1-2):197-207 [PMID: 15261115]
  7. J Physiol. 2012 Apr 1;590(7):1535-46 [PMID: 22331421]
  8. J Neurophysiol. 2008 Feb;99(2):426-41 [PMID: 18094106]
  9. J Neurochem. 2002 Dec;83(6):1441-51 [PMID: 12472898]
  10. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4459-64 [PMID: 18334630]
  11. Neuron. 2000 Apr;26(1):133-41 [PMID: 10798398]
  12. Neuron. 2002 Apr 25;34(3):463-77 [PMID: 11988176]
  13. Eur J Pharmacol. 2007 Sep 10;570(1-3):43-9 [PMID: 17610871]
  14. Biol Psychiatry. 2012 Sep 15;72(6):491-8 [PMID: 22521150]
  15. J Biol Chem. 2010 Feb 26;285(9):6101-8 [PMID: 20051515]
  16. J Physiol. 2003 Jan 1;546(Pt 1):77-87 [PMID: 12509480]
  17. J Neurosci. 1998 Apr 1;18(7):2685-96 [PMID: 9502826]
  18. Biochem J. 2002 Feb 1;361(Pt 3):443-50 [PMID: 11802773]
  19. Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3621-6 [PMID: 14988500]
  20. Neuroendocrinology. 2011;94(4):278-90 [PMID: 22024815]
  21. J Neurosci. 2004 Oct 6;24(40):8678-89 [PMID: 15470133]
  22. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16556-61 [PMID: 17060608]
  23. Mol Neurodegener. 2013 Jan 17;8:3 [PMID: 23327202]
  24. Biochem Biophys Res Commun. 2004 Aug 20;321(2):510-3 [PMID: 15358205]
  25. J Biol Chem. 2002 Feb 15;277(7):5203-8 [PMID: 11739374]
  26. Brain Res. 1995 Aug 28;690(1):41-7 [PMID: 7496805]
  27. Am J Physiol Cell Physiol. 2010 Dec;299(6):C1355-62 [PMID: 20826761]
  28. Trends Neurosci. 2003 Sep;26(9):477-83 [PMID: 12948658]
  29. Acta Histochem Cytochem. 2006 Dec 28;39(6):173-81 [PMID: 17327904]
  30. Neuroscience. 2007 Mar 16;145(2):631-41 [PMID: 17224241]
  31. Neuroreport. 2000 Jul 14;11(10):2217-22 [PMID: 10923674]
  32. J Chem Neuroanat. 2009 Dec;38(4):266-72 [PMID: 19505571]
  33. Neuron. 2012 Mar 8;73(5):962-77 [PMID: 22405206]
  34. Int J Dev Neurosci. 2011 May;29(3):215-23 [PMID: 21345366]
  35. J Neurosci. 2009 Apr 29;29(17):5381-8 [PMID: 19403806]

MeSH Term

Acid Sensing Ion Channels
Animals
Cells, Cultured
Corticosterone
Hippocampus
Neurons
Patch-Clamp Techniques
Protein Kinase C
Rats
Rats, Sprague-Dawley

Chemicals

Acid Sensing Ion Channels
Protein Kinase C
Corticosterone

Word Cloud

Created with Highcharts 10.0.0ASIC1aCORTcurrentμMapplication1increasehippocampalneuronsextracellularinducedionchannelsASICneuronalactivationcorticosteronepresentcultureddata100cellantagonistPKCrapidmayAcid-sensingplayimportantrolecentralsystemexcessiveASICsinducesdamageRecentstudiesshowsubunitinvolvedstressprocessesmechanismsregulatedstress-inducedhormoneyetunelucidatedstudyexploreeffectswhole-cellpatchclamptechniqueusedshowinginwardsolutionpH6appliedexteriorMoreovermembrane-impermeableCORT-BSAmaintainselevationactionHoweverintracellularSubsequentenhancedamplitudeAlsoRU38486nuclearglucocorticoidsreceptorblockadditionresultedsignificantenhancementpresencephorbol12-myristate13-acetate5bryostatin1proteinkinaseCagonistscontrarypretreatmentGF109203X3elevateindicatecausedcorticosteroidreceptorsfoundmembranesinvolvePKC-dependentmechanismfacilitationacid-sensing

Similar Articles

Cited By