Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum.

Marilyn Juarez, Michelle Reyes, Tiffany Coleman, Lisa Rotenstein, Sothy Sao, Darwin Martinez, Matthew Jones, Rachel Mackelprang, Maria Elena De Bellard
Author Information
  1. Marilyn Juarez: Biology Department, California State University Northridge, Northridge, California 91330, USA.

Abstract

The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates.

Keywords

References

  1. Dev Dyn. 2007 Jan;236(1):118-27 [PMID: 17131406]
  2. J Exp Zool B Mol Dev Evol. 2005 Jul 15;304(4):269-73 [PMID: 16003767]
  3. Mech Dev. 2004 Sep;121(9):1089-102 [PMID: 15296974]
  4. Dev Biol. 2011 Nov 1;359(1):149-161 [PMID: 21889937]
  5. Dev Biol. 1998 Dec 15;204(2):327-44 [PMID: 9882474]
  6. Brain Res Bull. 2002 Feb-Mar 1;57(3-4):277-80 [PMID: 11922971]
  7. Bioinformatics. 2001 Dec;17(12):1246-7 [PMID: 11751242]
  8. Mol Biol Evol. 2000 Apr;17(4):540-52 [PMID: 10742046]
  9. Mech Dev. 2005 May;122(5):659-69 [PMID: 15817223]
  10. Genome Res. 2008 Jul;18(7):1127-32 [PMID: 18562679]
  11. Development. 1993 Jun;118(2):363-76 [PMID: 7693414]
  12. J Anat. 2001 Jul-Aug;199(Pt 1-2):85-98 [PMID: 11523831]
  13. J Anat Physiol. 1876 Oct;11(Pt 1):128-172.1 [PMID: 17231132]
  14. Science. 1983 Apr 15;220(4594):268-73 [PMID: 17732898]
  15. Evol Dev. 2012 May-Jun;14(3):257-76 [PMID: 23017074]
  16. Q Rev Biol. 1983 Mar;58(1):1-28 [PMID: 6346380]
  17. Development. 2001 Nov;128(21):4113-25 [PMID: 11684650]
  18. Mech Dev. 2000 May;93(1-2):161-4 [PMID: 10781949]
  19. Dev Dyn. 2007 Feb;236(2):389-403 [PMID: 17183528]
  20. Evol Dev. 2006 Jan-Feb;8(1):74-80 [PMID: 16409384]
  21. Neuron. 2002 May 16;34(4):577-88 [PMID: 12062041]
  22. Genome Res. 2008 Jul;18(7):1100-11 [PMID: 18562680]
  23. Anat Embryol (Berl). 2005 Jun;209(5):349-55 [PMID: 15891909]
  24. Anat Rec. 2001 Jan 1;262(1):1-15 [PMID: 11146424]
  25. Mech Dev. 2000 Jun;94(1-2):257-60 [PMID: 10842083]
  26. Zoology (Jena). 2005;108(1):13-25 [PMID: 16351951]
  27. Dev Dyn. 2008 Jun;237(6):1590-603 [PMID: 18498098]
  28. Development. 2003 Jun;130(11):2317-27 [PMID: 12702647]
  29. Syst Biol. 2002 Jun;51(3):492-508 [PMID: 12079646]
  30. Development. 1994 Mar;120(3):495-503 [PMID: 8162850]
  31. Dev Biol. 2010 Aug 15;344(2):566-8 [PMID: 20478296]
  32. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1507-12 [PMID: 21220324]
  33. Dev Genes Evol. 2002 May;212(4):203-6 [PMID: 12012235]
  34. Pediatr Dev Pathol. 2002 May-Jun;5(3):224-47 [PMID: 12007016]
  35. J Anat. 2013 Jan;222(1):19-31 [PMID: 22414251]
  36. Dev Biol. 1986 May;115(1):44-55 [PMID: 3516760]
  37. Development. 2010 Aug;137(16):2605-21 [PMID: 20663816]
  38. Biol Bull. 2008 Jun;214(3):303-14 [PMID: 18574106]
  39. Development. 1992 Oct;116(2):297-307 [PMID: 1283734]
  40. Genesis. 2008 Nov;46(11):673-82 [PMID: 19003930]
  41. BMC Dev Biol. 2010 May 18;10:52 [PMID: 20482793]
  42. Nat Neurosci. 2010 Oct;13(10):1181-9 [PMID: 20871603]
  43. Dev Cell. 2004 Sep;7(3):291-9 [PMID: 15363405]
  44. Nature. 2008 Dec 18;456(7224):957-61 [PMID: 19078960]
  45. J Neurosci. 1998 Jan 1;18(1):237-50 [PMID: 9412504]
  46. Genome Biol. 2007;8(3):R36 [PMID: 17352807]
  47. Genome Biol. 2012;13(3):R24 [PMID: 22458515]
  48. J Exp Zool B Mol Dev Evol. 2005 Jul 15;304(4):274-97 [PMID: 16003768]
  49. Nature. 1995 Jun 29;375(6534):787-90 [PMID: 7596411]
  50. Nature. 2007 Apr 5;446(7136):672-5 [PMID: 17377535]
  51. J Embryol Exp Morphol. 1973 Aug;30(1):31-48 [PMID: 4729950]
  52. J Comp Neurol. 2008 Aug 1;509(4):356-71 [PMID: 18512230]
  53. Dev Biol. 2007 Apr 1;304(1):156-81 [PMID: 17234174]
  54. Evol Dev. 2003 Mar-Apr;5(2):136-44 [PMID: 12622730]
  55. PLoS One. 2007 Aug 29;2(8):e787 [PMID: 17726517]
  56. Semin Cell Dev Biol. 2005 Dec;16(6):694-703 [PMID: 16039883]
  57. Development. 2012 Sep;139(17):3142-6 [PMID: 22833123]
  58. Curr Opin Neurobiol. 2004 Feb;14(1):67-73 [PMID: 15018940]
  59. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9360-5 [PMID: 12878728]
  60. Int J Dev Biol. 2012;56(5):377-83 [PMID: 22811271]
  61. Biotechniques. 2000 Jun;28(6):1102, 1104 [PMID: 10868275]
  62. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  63. J Exp Zool B Mol Dev Evol. 2008 Jun 15;310(4):370-83 [PMID: 17638322]
  64. Neuron. 2003 Apr 10;38(1):17-31 [PMID: 12691661]
  65. Cytogenet Genome Res. 2011;134(4):283-94 [PMID: 21720154]
  66. Development. 2007 Jul;134(13):2425-33 [PMID: 17522158]
  67. Gene Expr Patterns. 2009 Dec;9(8):572-85 [PMID: 19733690]
  68. Brain Res Rev. 2007 Oct;55(2):237-47 [PMID: 17765317]
  69. Dev Biol. 1999 Mar 15;207(2):287-308 [PMID: 10068464]
  70. Dev Biol. 2000 Nov 15;227(2):239-55 [PMID: 11071752]
  71. Dev Genes Evol. 2001 Dec;211(11):533-44 [PMID: 11862459]
  72. Science. 1994 Apr 15;264(5157):426-30 [PMID: 8153631]
  73. Dev Biol. 2010 Aug 15;344(2):555-65 [PMID: 20399766]
  74. Dev Dyn. 2007 Sep;236(9):2421-31 [PMID: 17676641]
  75. Zoolog Sci. 2008 Oct;25(10):982-9 [PMID: 19267634]
  76. Dev Biol. 2006 Feb 1;290(1):92-104 [PMID: 16364284]
  77. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  78. Development. 2006 Oct;133(19):3817-26 [PMID: 16943273]
  79. Brain Res Dev Brain Res. 2000 Jun 30;121(2):233-41 [PMID: 10876038]
  80. Int J Biochem Cell Biol. 2010 Mar;42(3):465-71 [PMID: 19638316]

Grants

  1. 5SC3GM096904-02/NIGMS NIH HHS
  2. SC3 GM096904/NIGMS NIH HHS
  3. R15 NS060099/NINDS NIH HHS
  4. GM 2 T34 GM008959/NIGMS NIH HHS
  5. 2R15NS060099-02A1/NINDS NIH HHS

MeSH Term

Amino Acids
Animals
CD57 Antigens
Cell Differentiation
Cell Movement
Gene Expression Regulation, Developmental
Microscopy, Electron, Scanning
Neural Crest
Neuroglia
Neurons
Phylogeny
SOXE Transcription Factors
Sequence Analysis, Protein
Sharks
Tubulin

Chemicals

Amino Acids
CD57 Antigens
SOXE Transcription Factors
Tubulin
dolaisoleucine

Word Cloud

Created with Highcharts 10.0.0neuralcresttrunkpunctatumcellsdevelopmentsharkSox9observedvertebratesChiloscylliumpatternmigratoryCcellgangliaAlthoughjawedpresentbamboolabelingDiISox8alongvertebrateSoxEgeneslaterallinepopulationmesenchymalmigratingtubegivesrisestructuretypes:jawpartperipheralmelanocytesmuchknownclearpictureelasmobranchsyetdevelopeddetailedstudyVitaldioctadecyltetramethylindocarbocyanineperchloratesituhybridizationusingclonedprobesdemonstratedfollowsimilarpathsalreadydescribedzebrafishamphibiansfoundrostralsidesomitesventromedialpathwaybranchialarchesgutsensorynervesInterestinglysequencesalignedappearedancientcorrespondingparalogsexpressiontwoespeciallymatchedSox10patternsteleostsAlsointerestsuggestinggliallikelyoriginfirstshowcartilaginousfishesfindingsdemonstratefollowshighlyconservedCharacterizationembryosox8sox9

Similar Articles

Cited By (6)