In Silico screening on the three-dimensional model of the Plasmodium vivax SUB1 protease leads to the validation of a novel anti-parasite compound.

Anthony Bouillon, David Giganti, Christophe Benedet, Olivier Gorgette, Stéphane Pêtres, Elodie Crublet, Christine Girard-Blanc, Benoit Witkowski, Didier Ménard, Michael Nilges, Odile Mercereau-Puijalon, Véronique Stoven, Jean-Christophe Barale
Author Information
  1. Anthony Bouillon: Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France.

Abstract

Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 μM for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial.

Keywords

References

  1. PLoS One. 2011;6(7):e21812 [PMID: 21818266]
  2. J Mol Biol. 2004 Jul 2;340(2):385-95 [PMID: 15201059]
  3. Biochemistry. 1992 Jul 7;31(26):6011-8 [PMID: 1627543]
  4. J Comput Biol. 2008 Apr;15(3):231-40 [PMID: 18333758]
  5. J Biol Chem. 1998 Sep 4;273(36):23398-409 [PMID: 9722575]
  6. Adv Exp Med Biol. 2011;712:30-48 [PMID: 21660657]
  7. Science. 2010 Sep 3;329(5996):1175-80 [PMID: 20813948]
  8. Virus Res. 2008 Apr;133(1):63-73 [PMID: 17397958]
  9. Nature. 2010 Feb 4;463(7281):632-6 [PMID: 20130644]
  10. Antimicrob Agents Chemother. 1979 Dec;16(6):710-8 [PMID: 394674]
  11. Science. 2011 Dec 9;334(6061):1372-7 [PMID: 22096101]
  12. Subcell Biochem. 2008;47:121-39 [PMID: 18512347]
  13. Proteins. 1997;Suppl 1:215-20 [PMID: 9485515]
  14. EMBO J. 2009 Mar 18;28(6):725-35 [PMID: 19214190]
  15. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):249-64 [PMID: 4399049]
  16. Chem Biol. 2012 Jan 27;19(1):116-29 [PMID: 22284359]
  17. Bioinformatics. 2007 Aug 1;23(15):1901-8 [PMID: 17510171]
  18. Protein Sci. 2008 Jun;17(6):990-1002 [PMID: 18441233]
  19. PLoS Negl Trop Dis. 2011 May 03;5(5):e1023 [PMID: 21572521]
  20. J Mol Biol. 1993 Dec 5;234(3):779-815 [PMID: 8254673]
  21. J Comput Aided Mol Des. 1997 Jan;11(1):53-60 [PMID: 9139112]
  22. Bioorg Med Chem Lett. 2012 Jan 15;22(2):1282-6 [PMID: 22204908]
  23. Nat Rev Drug Discov. 2004 Jun;3(6):509-20 [PMID: 15173840]
  24. Cytometry A. 2007 May;71(5):297-307 [PMID: 17279569]
  25. Int J Parasitol. 2012 May 15;42(6):597-612 [PMID: 22543039]
  26. Bioinformatics. 2003 Dec 12;19(18):2500-1 [PMID: 14668246]
  27. Bioinformatics. 2007 Mar 15;23(6):769-70 [PMID: 17237072]
  28. Cell Microbiol. 2008 Oct;10(10):1925-34 [PMID: 18503638]
  29. Nature. 2010 Feb 4;463(7281):627-31 [PMID: 20130643]
  30. Proteins. 1992 Jan;12(1):63-74 [PMID: 1553381]
  31. Nature. 2010 May 20;465(7296):305-10 [PMID: 20485427]
  32. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):271-6 [PMID: 11114161]
  33. J Mol Recognit. 1999 May-Jun;12(3):177-90 [PMID: 10398408]
  34. Mol Microbiol. 2006 Feb;59(4):1175-84 [PMID: 16430692]
  35. Pharmacotherapy. 2011 Oct;31(10):951-74 [PMID: 21950642]
  36. J Mol Biol. 1996 Aug 23;261(3):470-89 [PMID: 8780787]
  37. Cell. 2007 Dec 14;131(6):1072-83 [PMID: 18083098]
  38. J Biol Chem. 2002 Aug 16;277(33):29698-709 [PMID: 12052828]
  39. Mol Biochem Parasitol. 2005 Dec;144(2):187-97 [PMID: 16183148]
  40. Int J Parasitol. 2010 Oct;40(12):1347-65 [PMID: 20600072]
  41. J Comput Aided Mol Des. 2002 Feb;16(2):129-49 [PMID: 12188022]
  42. Curr Top Med Chem. 2012;12(5):445-55 [PMID: 22242846]
  43. J Med Chem. 2003 Jul 3;46(14):2895-907 [PMID: 12825931]
  44. Bioorg Med Chem Lett. 2012 Aug 15;22(16):5317-21 [PMID: 22796182]
  45. Nat Rev Microbiol. 2010 Sep;8(9):617-21 [PMID: 20706280]
  46. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6445-50 [PMID: 10339607]
  47. PLoS Med. 2011 Jan 25;8(1):e1000402 [PMID: 21311580]
  48. Protein Sci. 1997 Mar;6(3):501-23 [PMID: 9070434]
  49. Biochem Pharmacol. 2004 Nov 15;68(10):1903-10 [PMID: 15476661]
  50. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  51. Methods Mol Biol. 2013;923:523-34 [PMID: 22990802]

MeSH Term

Amino Acid Sequence
Animals
Antimalarials
Binding Sites
Biocatalysis
Dose-Response Relationship, Drug
Erythrocytes
Female
Kinetics
Malaria
Merozoites
Mice
Models, Molecular
Molecular Sequence Data
Molecular Structure
Plasmodium berghei
Plasmodium vivax
Protein Structure, Tertiary
Protozoan Proteins
Sequence Homology, Amino Acid
Serine Proteases
Serine Proteinase Inhibitors
Sf9 Cells
Substrate Specificity

Chemicals

Antimalarials
Protozoan Proteins
Serine Proteinase Inhibitors
Serine Proteases

Word Cloud

Similar Articles

Cited By