A semi-supervised method for drug-target interaction prediction with consistency in networks.

Hailin Chen, Zuping Zhang
Author Information
  1. Hailin Chen: School of Information Science and Engineering, Central South University, Changsha, China.

Abstract

Computational prediction of interactions between drugs and their target proteins is of great importance for drug discovery and design. The difficulties of developing computational methods for the prediction of such potential interactions lie in the rarity of known drug-protein interactions and no experimentally verified negative drug-target interaction sample. Furthermore, target proteins need also to be predicted for some new drugs without any known target interaction information. In this paper, a semi-supervised learning method NetCBP is presented to address this problem by using labeled and unlabeled interaction information. Assuming coherent interactions between the drugs ranked by their relevance to a query drug, and the target proteins ranked by their relevance to the hidden target proteins of the query drug, we formulate a learning framework maximizing the rank coherence with respect to the known drug-target interactions. When applied to four classes of important drug-target interaction networks, our method improves previous methods in terms of cross-validation and some strongly predicted interactions are confirmed by the publicly accessible drug target databases, which indicates the usefulness of our method. Finally, a comprehensive prediction of drug-target interactions enables us to suggest many new potential drug-target interactions for further studies.

References

  1. Nat Rev Drug Discov. 2004 Aug;3(8):673-83 [PMID: 15286734]
  2. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7 [PMID: 16381885]
  3. Nat Chem Biol. 2008 Nov;4(11):682-90 [PMID: 18936753]
  4. Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14 [PMID: 22080510]
  5. Bioinformatics. 2009 Sep 15;25(18):2397-403 [PMID: 19605421]
  6. Annu Rev Pharmacol Toxicol. 2012;52:361-79 [PMID: 22017683]
  7. Bioinformatics. 2008 Jul 1;24(13):i232-40 [PMID: 18586719]
  8. J Am Chem Soc. 2003 Oct 1;125(39):11853-65 [PMID: 14505407]
  9. J Mol Biol. 1981 Mar 25;147(1):195-7 [PMID: 7265238]
  10. Mol Biosyst. 2012 Jul 6;8(7):1970-8 [PMID: 22538619]
  11. Lancet. 2009 Aug 22;374(9690):620-7 [PMID: 19595447]
  12. Bioinformatics. 2012 Sep 15;28(18):2304-10 [PMID: 22730431]
  13. BMC Syst Biol. 2010 Sep 13;4 Suppl 2:S6 [PMID: 20840733]
  14. Nat Biotechnol. 2007 Feb;25(2):197-206 [PMID: 17287757]
  15. Mol Cancer Ther. 2007 Oct;6(10):2626-33 [PMID: 17913855]
  16. Nucleic Acids Res. 2012 Jan;40(Database issue):D1113-7 [PMID: 22067455]
  17. Nature. 2002 Apr 11;416(6881):653-7 [PMID: 11948353]
  18. J Clin Invest. 2006 Mar;116(3):561-70 [PMID: 16511588]
  19. Nat Biotechnol. 2007 Jan;25(1):71-5 [PMID: 17211405]
  20. Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7 [PMID: 21948594]
  21. Bioinformatics. 2005 Sep 1;21 Suppl 2:ii245-51 [PMID: 16204113]
  22. PLoS Comput Biol. 2012;8(5):e1002503 [PMID: 22589709]
  23. Bioinformatics. 2010 Jun 15;26(12):i246-54 [PMID: 20529913]
  24. Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41 [PMID: 21059682]
  25. Bioinformatics. 2011 Oct 1;27(19):2692-9 [PMID: 21824970]
  26. Chem Biol. 2003 May;10(5):383-96 [PMID: 12770821]

MeSH Term

Artificial Intelligence
Clozapine
Computational Biology
Drug Discovery
Humans
Pharmaceutical Preparations
Protein Binding
Proteins

Chemicals

Pharmaceutical Preparations
Proteins
Clozapine

Word Cloud

Created with Highcharts 10.0.0interactionstargetdrug-targetinteractionpredictionproteinsdrugmethoddrugsknownmethodspotentialpredictednewinformationsemi-supervisedlearningrankedrelevancequerynetworksComputationalgreatimportancediscoverydesigndifficultiesdevelopingcomputationallieraritydrug-proteinexperimentallyverifiednegativesampleFurthermoreneedalsowithoutpaperNetCBPpresentedaddressproblemusinglabeledunlabeledAssumingcoherenthiddenformulateframeworkmaximizingrankcoherencerespectappliedfourclassesimportantimprovesprevioustermscross-validationstronglyconfirmedpubliclyaccessibledatabasesindicatesusefulnessFinallycomprehensiveenablesussuggestmanystudiesconsistency

Similar Articles

Cited By