Deep mRNA sequencing analysis to capture the transcriptome landscape of zebrafish embryos and larvae.

Hongxing Yang, Yan Zhou, Jianlei Gu, Shuying Xie, Yao Xu, Genfeng Zhu, Lei Wang, Jiyue Huang, Hong Ma, Jihua Yao
Author Information
  1. Hongxing Yang: State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Science, Fudan University, Shanghai, China.

Abstract

Transcriptome analysis is a powerful tool to obtain large amount genome-scale gene expression profiles. Despite its extensive usage to diverse biological problems in the last decade, transcriptomic researches approaching the zebrafish embryonic development have been very limited. Several recent studies have made great progress in this direction, yet the large gap still exists, especially regarding to the transcriptome dynamics of embryonic stages from early gastrulation onwards. Here, we present a comprehensive analysis about the transcriptomes of 9 different stages covering 7 major periods (cleavage, blastula, gastrula, segmentation, pharyngula, hatching and early larval stage) in zebrafish development, by recruiting the RNA-sequencing technology. We detected the expression for at least 24,065 genes in at least one of the 9 stages. We identified 16,130 genes that were significantly differentially expressed between stages and were subsequently classified into six clusters. Each revealed gene cluster had distinct expression patterns and characteristic functional pathways, providing a framework for the understanding of the developmental transcriptome dynamics. Over 4000 genes were identified as preferentially expressed in one of the stages, which could be of high relevance to stage-specific developmental and molecular events. Among the 68 transcription factor families active during development, most had enhanced average expression levels and thus might be crucial for embryogenesis, whereas the inactivation of the other families was likely required by the activation of the zygotic genome. We discussed our RNA-seq data together with previous findings about the Wnt signaling pathway and some other genes with known functions, to show how our data could be used to advance our understanding about these developmental functional elements. Our study provides ample information for further study about the molecular and cellular mechanisms underlying vertebrate development.

References

  1. Mol Cancer Res. 2003 Jan;1(3):195-206 [PMID: 12556559]
  2. Genome Res. 2003 Mar;13(3):455-66 [PMID: 12618376]
  3. Mech Dev. 2007 Sep-Oct;124(9-10):762-74 [PMID: 17709232]
  4. Pediatr Res. 2008 Nov;64(5):470-6 [PMID: 18679162]
  5. J Cell Biol. 2007 Aug 13;178(4):621-33 [PMID: 17698606]
  6. Mech Dev. 2004 Feb;121(2):131-42 [PMID: 15037315]
  7. Nat Genet. 2002 Jan;30(1):117-21 [PMID: 11753388]
  8. Science. 2009 May 8;324(5928):807-10 [PMID: 19423829]
  9. Mol Immunol. 2007 Feb;44(6):1190-7 [PMID: 16901544]
  10. Development. 2002 May;129(10):2317-27 [PMID: 11973265]
  11. Gene Expr Patterns. 2004 Nov;5(1):107-12 [PMID: 15533825]
  12. Trends Cell Biol. 2009 Mar;19(3):119-29 [PMID: 19208479]
  13. Dev Biol. 2010 May 15;341(2):444-58 [PMID: 20226780]
  14. Dev Dyn. 2010 Sep;239(9):2426-34 [PMID: 20652957]
  15. Cell Mol Life Sci. 2007 Oct;64(19-20):2590-606 [PMID: 17599239]
  16. Development. 2008 Nov;135(22):3719-29 [PMID: 18927149]
  17. Genes Dev. 2005 Jan 1;19(1):164-75 [PMID: 15630025]
  18. Hum Reprod Update. 2011 Mar-Apr;17(2):272-90 [PMID: 20716614]
  19. Mol Cell Biol. 2006 Feb;26(3):843-51 [PMID: 16428440]
  20. Hum Mol Genet. 2003 Apr 1;12 Spec No 1:R1-8 [PMID: 12668591]
  21. Bioinformatics. 2006 Jul 1;22(13):1600-7 [PMID: 16606683]
  22. J Neurosci. 2007 Dec 12;27(50):13866-74 [PMID: 18077698]
  23. Gene Expr Patterns. 2011 Jan-Feb;11(1-2):3-11 [PMID: 20804857]
  24. Genes Dev. 2008 Sep 1;22(17):2308-41 [PMID: 18765787]
  25. Pharmacol Ther. 2008 Apr;118(1):58-81 [PMID: 18313758]
  26. Nat Rev Genet. 2007 May;8(5):353-67 [PMID: 17440532]
  27. Development. 2008 Mar;135(5):919-29 [PMID: 18234725]
  28. PLoS Biol. 2011 Jan 18;9(1):e1000582 [PMID: 21267068]
  29. BMC Genomics. 2011 Jan 12;12:24 [PMID: 21226904]
  30. PLoS Biol. 2003 Dec;1(3):E74 [PMID: 14691545]
  31. Expert Rev Mol Med. 2008 Nov 04;10:e32 [PMID: 18980707]
  32. Mol Immunol. 2006 Mar;43(7):860-9 [PMID: 16055191]
  33. Gene Expr Patterns. 2009 Oct;9(7):520-7 [PMID: 19595791]
  34. Genome Res. 2012 Mar;22(3):577-91 [PMID: 22110045]
  35. Dev Biol. 2010 Apr 15;340(2):306-17 [PMID: 20123093]
  36. PLoS One. 2010 Oct 21;5(10):e13549 [PMID: 21042410]
  37. Chromosoma. 2009 Oct;118(5):549-65 [PMID: 19506892]
  38. Dev Cell. 2010 Jul 20;19(1):174-84 [PMID: 20643359]
  39. Exp Cell Res. 1995 Dec;221(2):534-42 [PMID: 7493655]
  40. Gen Comp Endocrinol. 2011 May 1;171(3):332-40 [PMID: 21362424]
  41. Nucleic Acids Res. 2005 Sep 02;33(15):4914-21 [PMID: 16284195]
  42. Nat Rev Cancer. 2008 May;8(5):387-98 [PMID: 18432252]
  43. Mol Cancer Res. 2008 May;6(5):685-94 [PMID: 18505914]
  44. J Cell Physiol. 2010 Feb;222(2):286-93 [PMID: 19890851]
  45. Development. 2003 Jun;130(11):2455-66 [PMID: 12702659]
  46. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  47. Stem Cells. 2011 Jan;29(1):141-53 [PMID: 21280163]
  48. EMBO J. 2011 May 4;30(9):1841-51 [PMID: 21468028]
  49. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12741-6 [PMID: 19617558]
  50. Gene Expr Patterns. 2006 Oct;6(8):835-42 [PMID: 16545988]
  51. Cell Mol Life Sci. 2008 Oct;65(19):3000-18 [PMID: 18516494]
  52. Genome Res. 2008 Sep;18(9):1509-17 [PMID: 18550803]
  53. Science. 1995 Oct 20;270(5235):484-7 [PMID: 7570003]
  54. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  55. BMC Dev Biol. 2009 Jan 28;9:7 [PMID: 19175933]
  56. J Cell Biol. 2006 Dec 4;175(5):791-802 [PMID: 17130287]
  57. Adv Immunol. 2005;86:209-39 [PMID: 15705423]
  58. Nat Rev Genet. 2005 Dec;6(12):893-904 [PMID: 16341070]
  59. Neurosci Lett. 2007 Feb 27;414(1):26-9 [PMID: 17222974]
  60. Annu Rev Cell Dev Biol. 2011;27:631-52 [PMID: 21721946]
  61. Eur J Neurosci. 2011 Feb;33(4):658-67 [PMID: 21299656]
  62. J Biol Chem. 1996 Mar 15;271(11):6050-61 [PMID: 8626390]
  63. Genome Res. 2011 Aug;21(8):1328-38 [PMID: 21555364]
  64. J Am Assoc Lab Anim Sci. 2009 Nov;48(6):785-9 [PMID: 19930828]
  65. Dev Dyn. 1996 May;206(1):1-11 [PMID: 9019240]
  66. Nature. 2002 Aug 8;418(6898):636-41 [PMID: 12167861]
  67. Dev Dyn. 2006 Sep;235(9):2437-48 [PMID: 16739220]
  68. Neuron. 2005 Jul 21;47(2):231-42 [PMID: 16039565]
  69. Dev Biol. 2002 May 1;245(1):109-23 [PMID: 11969259]
  70. Trends Biotechnol. 2001 Dec;19(12):511-8 [PMID: 11711195]
  71. Development. 2007 Sep;134(17):3167-76 [PMID: 17670791]
  72. Evol Dev. 2011 Nov-Dec;13(6):567-8 [PMID: 23016940]
  73. Dev Dyn. 2005 Dec;234(4):992-6 [PMID: 16222715]
  74. Oncogene. 2008 Jan 24;27(5):629-40 [PMID: 17684488]
  75. J Biol Chem. 2005 Apr 8;280(14):13928-35 [PMID: 15691849]
  76. Methods Mol Biol. 2008;469:3-18 [PMID: 19109698]
  77. J Immunotoxicol. 2011 Jul-Sep;8(3):228-37 [PMID: 21793797]
  78. Nature. 2000 May 4;405(6782):76-81 [PMID: 10811221]
  79. Dev Biol. 2005 Mar 1;279(1):179-92 [PMID: 15708567]
  80. Acta Physiol (Oxf). 2012 Jan;204(1):52-64 [PMID: 21447091]
  81. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15876-80 [PMID: 21911385]
  82. Nature. 2011 Mar 24;471(7339):513-7 [PMID: 21430779]
  83. FEBS Lett. 2003 Mar 13;538(1-3):117-24 [PMID: 12633864]
  84. Int J Biochem Cell Biol. 2004 Aug;36(8):1424-39 [PMID: 15147722]
  85. Cell Death Differ. 2006 Sep;13(9):1475-84 [PMID: 16322753]
  86. Dev Biol. 1998 Jul 15;199(2):261-72 [PMID: 9698446]
  87. PLoS Genet. 2005 Aug;1(2):260-76 [PMID: 16132083]
  88. Dev Biol. 2004 May 1;269(1):237-51 [PMID: 15081370]
  89. Trends Cell Biol. 2007 Feb;17(2):72-9 [PMID: 17169561]
  90. Curr Biol. 2002 Jun 4;12(11):876-84 [PMID: 12062050]
  91. Mol Immunol. 2009 Sep;46(15):2918-30 [PMID: 19631987]
  92. Dev Biol. 2000 Nov 15;227(2):239-55 [PMID: 11071752]
  93. Annu Rev Genet. 2005;39:561-613 [PMID: 16285872]
  94. Development. 2005 Feb;132(4):645-58 [PMID: 15677724]
  95. Development. 2009 Oct;136(19):3205-14 [PMID: 19736321]
  96. PLoS One. 2011;6(7):e22555 [PMID: 21799896]
  97. Nucleic Acids Res. 2012 Jan;40(Database issue):D144-9 [PMID: 22080564]
  98. BMC Dev Biol. 2011 May 24;11:30 [PMID: 21609443]
  99. Curr Biol. 2005 Mar 29;15(6):489-500 [PMID: 15797017]
  100. Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
  101. Brief Funct Genomics. 2012 May;11(3):251-64 [PMID: 22184333]

MeSH Term

Animals
Blastula
Cleavage Stage, Ovum
Embryonic Development
Gastrula
Gene Expression Profiling
Gene Expression Regulation, Developmental
High-Throughput Nucleotide Sequencing
Larva
Oligonucleotide Array Sequence Analysis
Sequence Analysis, RNA
Transcription Factors
Transcriptome
Wnt Signaling Pathway
Zebrafish
Zebrafish Proteins

Chemicals

Transcription Factors
Zebrafish Proteins

Word Cloud

Created with Highcharts 10.0.0stagesexpressiondevelopmentgenesanalysiszebrafishtranscriptomedevelopmentallargegeneembryonicdynamicsearly9leastoneidentifiedexpressedfunctionalunderstandingmolecularfamiliesdatastudyTranscriptomepowerfultoolobtainamountgenome-scaleprofilesDespiteextensiveusagediversebiologicalproblemslastdecadetranscriptomicresearchesapproachinglimitedSeveralrecentstudiesmadegreatprogressdirectionyetgapstillexistsespeciallyregardinggastrulationonwardspresentcomprehensivetranscriptomesdifferentcovering7majorperiodscleavageblastulagastrulasegmentationpharyngulahatchinglarvalstagerecruitingRNA-sequencingtechnologydetected2406516130significantlydifferentiallysubsequentlyclassifiedsixclustersrevealedclusterdistinctpatternscharacteristicpathwaysprovidingframework4000preferentiallyhighrelevancestage-specificeventsAmong68transcriptionfactoractiveenhancedaveragelevelsthusmightcrucialembryogenesiswhereasinactivationlikelyrequiredactivationzygoticgenomediscussedRNA-seqtogetherpreviousfindingsWntsignalingpathwayknownfunctionsshowusedadvanceelementsprovidesampleinformationcellularmechanismsunderlyingvertebrateDeepmRNAsequencingcapturelandscapeembryoslarvae

Similar Articles

Cited By