Hepatic ERK activity plays a role in energy metabolism.

Ping Jiao, Bin Feng, Yujie Li, Qin He, Haiyan Xu
Author Information
  1. Ping Jiao: Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.

Abstract

Mitogen activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK) and P38, have been reported to play important roles in energy homeostasis. In this study, we show that the activity of extracellular signal-regulated kinase (ERK) is increased in the livers of diet induced and genetically obese mice. Activation of ERK in the livers of lean mice by over-expressing the constitutively active MAPK kinase 1 (MEK CA) results in decreased energy expenditure, lowered expression of genes involved in fatty acid oxidation, increases fasting hyperglycemia and causes systemic insulin resistance. Interestingly, hepatic glycogen content is markedly increased and expression of G6Pase gene is decreased in mice over-expressing MEK CA compared to control mice expressing green fluorescent protein (GFP), therefore hepatic glucose output is not likely the major contributor of hyperglycemia. One potential mechanism of decreased expression of G6Pase gene by MEK CA is likely due to ERK mediated phosphorylation and cytosolic retention of FOXO1. Adipocytes isolated from MEK CA mice display increased lipolysis. Circulating levels of free fatty acids (FFAs) in these mice are also increased, which possibly contribute to systemic insulin resistance and subsequent hyperglycemia. Consistent with these results, knocking down ERK expression in the liver of diet induced obese (DIO) mice improves systemic insulin and glucose tolerance. These results indicate that increased hepatic ERK activity in DIO mice may contribute to increased liver glycogen content and decreased energy expenditure in obesity.

References

  1. Mol Cell Biol. 1997 Oct;17(10):6068-75 [PMID: 9315666]
  2. Sci Transl Med. 2010 Dec 1;2(60):60rv5 [PMID: 21123811]
  3. Exp Clin Endocrinol Diabetes. 2001;109 Suppl 2:S122-34 [PMID: 11460564]
  4. Mol Cell Endocrinol. 2012 Sep 25;361(1-2):116-23 [PMID: 22521266]
  5. J Biol Chem. 1997 Apr 18;272(16):10811-6 [PMID: 9099735]
  6. J Clin Invest. 2003 Dec;112(12):1821-30 [PMID: 14679177]
  7. Science. 1996 Dec 20;274(5295):2100-3 [PMID: 8953045]
  8. FASEB J. 1997 Jun;11(7):544-58 [PMID: 9212078]
  9. Diabetologia. 2011 Jan;54(1):180-9 [PMID: 20953578]
  10. PLoS One. 2008 Sep 05;3(9):e3151 [PMID: 18773087]
  11. Cell Metab. 2006 Mar;3(3):211-22 [PMID: 16517408]
  12. Diabetes. 2011 Feb;60(2):486-95 [PMID: 21270260]
  13. J Biol Chem. 2006 Aug 25;281(34):24336-44 [PMID: 16803882]
  14. Cell Signal. 2007 Mar;19(3):519-27 [PMID: 17113751]
  15. J Clin Invest. 2010 Nov;120(11):3901-11 [PMID: 20921625]
  16. J Biol Chem. 2002 Nov 29;277(48):46226-32 [PMID: 12270934]
  17. Obesity (Silver Spring). 2011 Mar;19(3):483-91 [PMID: 20829802]
  18. J Biol Chem. 2007 May 11;282(19):14205-12 [PMID: 17384440]
  19. J Biol Chem. 1996 Jan 26;271(4):1890-7 [PMID: 8567635]
  20. Diabetes. 2005 Feb;54(2):402-11 [PMID: 15677498]
  21. Biochimie. 2005 Jan;87(1):51-6 [PMID: 15733737]
  22. J Biol Chem. 1998 Feb 6;273(6):3198-204 [PMID: 9452431]
  23. Cell Metab. 2007 Nov;6(5):386-97 [PMID: 17983584]
  24. PLoS One. 2011;6(9):e24358 [PMID: 21931688]
  25. Front Biosci (Landmark Ed). 2009 Jan 01;14:1169-81 [PMID: 19273123]
  26. Protein Cell. 2010 Jun;1(6):537-51 [PMID: 21204007]
  27. Biochem J. 2001 Aug 1;357(Pt 3):867-73 [PMID: 11463359]
  28. J Endocrinol. 2009 Dec;203(3):337-47 [PMID: 19801385]
  29. Oncogene. 1994 Nov;9(11):3379-87 [PMID: 7936666]
  30. J Biol Chem. 2005 Oct 28;280(43):36013-8 [PMID: 16126724]
  31. Nature. 2002 Nov 21;420(6913):333-6 [PMID: 12447443]

Grants

  1. R01 DK080746/NIDDK NIH HHS
  2. NIDDK 5R01 DK080746/PHS HHS
  3. 3R01 DK080746-02S1/NIDDK NIH HHS

MeSH Term

Animals
Blood Glucose
Diet, High-Fat
Energy Metabolism
Enzyme Activation
Gene Knockdown Techniques
Glucose
HEK293 Cells
Homeostasis
Humans
Insulin Resistance
Lipid Metabolism
Liver
MAP Kinase Signaling System
Male
Mice
Mice, Inbred C57BL
Mice, Obese
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
Obesity
Organ Size
Phosphorylation
Protein Processing, Post-Translational
RNA, Small Interfering
Triglycerides

Chemicals

Blood Glucose
RNA, Small Interfering
Triglycerides
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
Glucose

Word Cloud

Created with Highcharts 10.0.0miceERKincreasedenergyMEKCAdecreasedexpressionkinaseactivityresultshyperglycemiasystemicinsulinhepaticproteinliversdietinducedobeseover-expressingexpenditurefattyresistanceglycogencontentG6PasegeneglucoselikelycontributeliverDIOMitogenactivatedkinasesMAPKsc-JunN-terminalJNKP38reportedplayimportantroleshomeostasisstudyshowextracellularsignal-regulatedgeneticallyActivationleanconstitutivelyactiveMAPK1loweredgenesinvolvedacidoxidationincreasesfastingcausesInterestinglymarkedlycomparedcontrolexpressinggreenfluorescentGFPthereforeoutputmajorcontributorOnepotentialmechanismduemediatedphosphorylationcytosolicretentionFOXO1AdipocytesisolateddisplaylipolysisCirculatinglevelsfreeacidsFFAsalsopossiblysubsequentConsistentknockingimprovestoleranceindicatemayobesityHepaticplaysrolemetabolism

Similar Articles

Cited By